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Abstract

We study the continuity, smoothing, and convergence properties of
Steiner symmetrization in higher space dimensions. Qur main result
is that Steiner symmetrization is continuous in W'? (1 < p < o0) in
all dimensions. This implies that spherical symmetrization cannot be
approximated in WP by sequences of Steiner symmetrizations. We
also give a quantitative version of the standard energy inequalities for
spherical symmetrization.

1 Introduction

Steiner symmetrization was invented as a tool for a geometric proof of the
isoperimetric inequality. The isoperimetric inequality says that among all
bodies of a given volume, the ball has the smallest perimeter; or, in the lan-
guage of rearrangements, that the perimeter of a body can only decrease
under spherical symmetrization. Steiner observed that the perimeter of a
body is generally larger than the perimeter of a related body of the same
volume which is symmetric at a hyperplane; or, as we would say, that
the perimeter of the body decreases under Steiner symmetrization. Since
the perimeter strictly decreases under symmetrization unless the body is
symmetric at the hyperplane to begin with, it follows that a body which
minimizes perimeter for a given volume must be symmetric at all hyper-
planes, and hence a ball [Ste].

This simple and convincing argument, however, does not show that a
perimeter-minimizing body exists. The problem can be overcome by con-
structing a sequence of Steiner symmetrizations that approximates spher-
ical symmetrization, and then using continuity of the volume and lower
semicontinuity of the perimeter with respect to that convergence [CStu].
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In the first half of the century, rearrangements were used to find the
optimal shape of a body of a given size in a variety of geometric and physi-
cal problems [Bl],[HaLitP],[Lu],[PSz],[R],[S]. In the 1970s, interest in rear-
rangements was renewed, as mathematicians began to look for geometric
proofs of functional inequalities [Bel],[BrLi],[Cr],[FF]],[Li2],[Ma],[Sp],[T2]
(see also [Bal,[BuZ],[Ch],[K],[Zi]). Rearrangements were generalized from
smooth or convex bodies to measurable sets and to functions in Sobolev
spaces [Hi],[T1]. Besides the characterization of the cases of equality of
the new, more general rearrangement inequalities [BrotZi],[HO, Lil], the
main technical point was the approximation of spherical symmetrization in
function spaces by sequences of simpler rearrangements [BrLiLut],[H].

In this paper, we address two related questions about Steiner sym-
metrization as a transformation on the Sobolev spaces W1 P(R™*!) for
1 <p < ocoandn > 1. First, is it continuous? Secondly, how closely can se-
quences of Steiner symmetrizations approximate spherical symmetrization?
We also discuss some refinements of the standard energy inequalities.

It is well known that Steiner and spherical symmetrization respect
LP and W'P spaces, preserve LP norms, decrease LP distances, and are
smoothing in the sense that they reduce W1P-norms and surface areas of
graphs [AlLi],[BTa],[BrotZi],[Hi]. (Higher Sobolev spaces are not preserved
[K] (see also [DSt])). However, since they are neither linear, nor bounded
as transformations on W1, nor spatially localized, continuity questions
are subtle.

There are two results in the literature concerning the continuity of re-
arrangements in Sobolev spaces. Coron proved that symmetrization in one
space dimension is continuous in W1 [Co], and Almgren and Lieb proved
that spherical symmetrization in all dimensions higher than one is discon-
tinuous [AlLi]. Clearly, then, symmetrizations along subspaces of dimension
greater than one, such as Schwarz symmetrization in dimensions three and
above, cannot be continuous either. We resolve the remaining case here: we
show that Steiner symmetrization is continuous as a transformation from
WhP(R™1) to itself for all n > 0.

It turns out that the question how well sequences of Steiner symmetriza-
tion can approximate spherical symmetrization is closely related to the con-
tinuity question. It is well known that the spherical symmetrization of a
nonnegative function can be approximated in LP(R™!) by a sequence of
Steiner symmetrizations and rotations [CStu] (for modern proofs see for
example [BrLiLut],[BuZ]). The continuity of Steiner symmetrization to-
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gether with the discontinuity result by Almgren and Lieb implies that the
approximating sequence will in general not converge in W1?. For suffi-
ciently smooth functions, however, the approximating sequence will con-
verge in W1P,

Even for general functions in W', however, sequences of Steiner sym-
metrizations and rotations can approximate spherical symmetrization re-
markably well: Under these sequences, nonnegative functions in WP con-
verge to their spherical symmetrizations in LP (and hence weakly in W'P)
in such a way that the angular part of the gradients converges to zero in
LP; in other words, the level sets and their perimeters converge to balls and
their perimeters.

The smoothing properties of rearrangements play a central role in our
proofs. We use a local version, due to Alvino, Trombetti and Lions
[AlvTrLio], of the well-known statement that gradient norms cannot in-
crease under the standard rearrangements to show that energy cannot ac-
cumulate in small sets under sequences of symmetrizations. Finally, we
strengthen the results of Brothers and Ziemer [BrotZi] by finding a lower
bound for the difference between the gradient norms of a function and its
rearrangement.

Acknowledgments. The problem was initiated by Thomas Lachand-
Robert [L], who suggested the link between the continuity and approxi-
mation questions mentioned above. I am very grateful to Fred Almgren,
Elliott Lieb, and Michael Loss for mentioning the problem to me, and for
many useful discussions. They have carried me through this project. Spe-
cial thanks to Michael Loss for a proof of the “only if” part of Theorem 2,
which made Lachand-Robert’s idea precise. Although I choose to present
a different proof here, the original proof played an important role in the
development of ideas. Finally, many thanks to Bernd Kawohl for pointing
out an error in an earlier version, and to Friedemann Brock for drawing my
attention to the results of Alvino, Trombetti, and Lions in [AlvTrLio].

2 Statement of the Results

We begin with some definitions. Let A be a measurable set in R,
n > 1. The spherical symmetrization, A*, of A is the open ball centered
at the origin which has the same Lebesgue measure as A. To define Stetner
symmetrization, we write points in R™™! as pairs (z,y) with ¢ € R and
y € R™ The Steiner symmetrization, SA, of A is the set whose one-
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dimensional cross sections parallel to the z-axis are centered open intervals
whose lengths equal the measures of the corresponding cross sections of A.
In short, if the cross section

Aly) ={z e R | (z,y) € 4}
has finite measure, we set

(54)(y) = (A(y)"
where * denotes symmetrization of the cross section in R; if A(y) is not
measurable or does not have finite measure, the corresponding cross section
of S A is defined to be R.

Assume that f is a function whose level sets
E(h):={z e R"| f(z) > R}
have finite measure for all positive heights h. We say that another function,
g, is a rearrangement of f, or equimeasurable with f, if almost all level sets

of g have the same measure as the corresponding level sets of f, that is, if
f and g have the same distribution function

(2.1) p(h) = |E(h)] .
We define the spherical symmetrization f* and the Steiner symmetrization
Sf of f using the layer-cake representation

(2.2) £@) = [ Xogry s
that is, we set
(2.3) 1@ = [ Zoprdh, $7) = [ Xsopdh.

By definition, f* and Sf are equimeasurable with f. We will often define
a slice of a function f between two heights h; < hs by

(2.4) f(@) == (min{f(z), ho} — h), .

If fisin WP, sois f; it is bounded by hj — ki, and vanishes outside a set
of finite measure. By definition, f* = (f)*, and Sf = Sf.

We say that a nonnegative measurable function f vanishes at infinity,
if all level sets at positive heights h differ from bounded sets by sets of
measure zero. We will need this assumption for our convergence results.

As mentioned in the introduction, Steiner symmetrization preserves LP-
norms and acts as a contraction on LP for all positive p. Integrals of convex
functionals of |V f| never increase under Steiner symmetrization; in partic-
ular, WP norms of functions (1 < p < o), surface areas of graphs, and
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perimeters of sets can only decrease. However, since Steiner symmetriza-
tion is not a linear transformation, these statements imply nothing about
continuity with respect to gradient norms — and, indeed, spherical sym-
metrization, which shares all these properties, is discontinuous as a trans-
formation on WP in any dimension greater than one [AlLi]. Our main
result is the following Theorem 1.

Theorem 1 (Continuity). Steiner symmetrization is continuous in
WLP(R™1) for 1 < p < oo in all dimensions n > 1. That is, for every
sequence of nonnegative functions

fo =+ finWh? = Sfi, — Sf in WhP.

The key to the proof of Theorem 1 is the observation that Steiner
symmetrization preserves the measure of the set of critical points (see
Lemma 4.3 and Corollary 4.5) — in contrast with spherical symmetriza-
tion in dimensions two and above, which, in general, shrinks the set of
critical points.

Almgren and Lieb proved that spherical symmetrization is discontinuous
at a function f precisely if the set of critical points of f* has smaller measure
than the set of critical points of f [AlLi]. Such functions form a dense
subspace of WP in all dimensions greater than one; however, spherical
symmetrization is continuous at sufficiently smooth functions and at radial
functions.

In view of the discontinuity result of Almgren and Lieb and the con-
tinuity statement of Theorem 1, it is natural to suspect that spherical
symmetrization cannot be approximated in the strong W!P-topology by a
sequence of Steiner symmetrizations and rotations. The following theorem
confirms this suspicion.

Theorem 2 (Approximation of spherical symmetrization by Steiner sym-
metrizations). Let f be a nonnegative function in WP(R™!) that vanishes
at infinity. There exists a sequence of successive Steiner symmetrizations
and rotations {fix}r>0 of f which approximates f* in WP, if and only if
spherical symmetriz:a,tion is continuous at f.

In spite of Theorem 2, sequences of Steiner symmetrizations can ap-
proximate spherical symmetrization quite well. For instance, the angular
component of the gradient converges to zero.

Theorem 3 (Convergence of the angular component of the derivative).
Let f be a nonnegative measurable function in W'P(R™"!) for somen > 1
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and p > 1. Assume that f vanishes at infinity. There exists a sequence
of functions { fr}x>0 which is constructed from f by a sequence of Steiner
symmetrizations and rotations so that

[ IVl = 0f/0r|, =0  (n—o0).

Theorem 3 is equivalent to the statement that the level sets of f converge
to balls in such a way, that also their perimeters converge to the perime-
ters of the corresponding balls (see Proposition 7.1). In other words, for
bounded measurable sets, the approximation of spherical symmetrization
by a sequence of Steiner symmetrizations is as good as one may hope for.

We begin the main part of the paper in section 3 with a discussion of
the smoothing properties of Steiner and spherical symmetrization. Propo-
sition 3.1 says that these symmetrizations never increase the average energy
density in a set of a given size. This is a useful reformulation of the stan-
dard energy inequalities. We use it in the proofs of all three theorems to
show convergence of sequences of functions constructed by rearrangements;
it serves as a substitute for a majorizing function in Lebesgue’s dominated
convergence theorem.

In section 4, we develop our principal tool for the proof of Theorem 1, a
distribution function, and study its properties. We pay special attention to
the effect of Steiner symmetrization on sets where partial derivatives vanish.
In Corollary 4.5 we show that the set of critical points does not shrink under
Steiner symmetrization. At the beginning of the section, we explain how the
work of Almgren and Lieb [AlLi] motivates our approach. Proposition 4.1
gives a quantitative version of the strict rearrangement inequality for convex
gradient integrals proved by Brothers and Ziemer [BrotZi]. The first half of
the paper ends with the proof of Theorem 1 in section 5. Our proof strongly
relies on Coron’s continuity result for symmetrization in one dimension [Co].

We then turn to the approximation results. We begin section 6 by com-
bining Theorem 1 with the discontinuity result of Almgren and Lieb (or
alternately Corollary 4.5 with Proposition 4.1) to show that, in general, the
spherical symmetrization cannot be approximated by Steiner symmetriza-
tions. This establishes the “only if” part of Theorem 2. We also show
that a sequence which approximates the spherical rearrangement of a given
function must certainly satisfy the conclusions of Theorem 3 and Proposi-
tion 7.1, that is, the angular derivative converges to zero, and the perimeter
of every level set converges to the perimeter of a ball. We also give some
notation and define the sequences of Steiner symmetrizations and rotations
that we use in the following two sections. In section 7, we prove Theorem 3
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and related statements about W !!-norms and perimeters of level sets. We
conclude with the proof of Theorem 2 in section 8.

3 Smoothing Properties

Proposition 3.1 is a local version of the well-known fact that gradient norms
cannot increase under symmetrization. It was first proved in a more general
form by Alvino, Trombetti, and Lions [AlvTrLio].

ProrosiTION 3.1 (Local smoothing property). Let f be a nonnegative
function in WHP(R"™) (where 1 < p < oo, and n > 1), and let Sf and f*
be the Steiner and spherical symmetrizations of f. For every ¢ > 0 and
every convex function F with F(0) = 0, F(z) > 0 for z > 0, we have the
inequalities

Gy s [ F(VPE)E < s [ F(195f@)ds

|E|<e |E|<e

where |E| denotes the Lebesgue measure of E. In particular, if the integral
on the right is finite, then the other two integrals are also finite.

REMARK. (i) The usual smoothing statements [BrotZi],[Du],[K] are recov-
ered by taking € — oo; note that the integrals are infinite unless F/(0) = 0.
The choices F(z) = zP and F(z) = v/1+ 22 — 1 give the statements that
W1P-norms and surface areas can only decrease under symmetrization.

(i) Alvino, Trombetti, and Lions showed in Proposition 2.1 of [AlvTrLio]
that inequality (3.1) is in fact equivalent to the standard global energy in-
equalities.

Proof. Following Ahlfors [A] and Baernstein and Taylor [BTa], we define
a simple rearrangement T f of a measurable function f. Fix a hyperplane
H that does not pass through the origin. Denote the half-space containing
the origin by H™, the other half space by H~, and let R be the reflection
at the hyperplane. Set

_ [ max{f(z), f(Re)} if z€HF
TIG) = { i ) it 2 -
Then it is easy to see that
(3.2) sup /EF(|VTf(m)|)dm: sup /EF(|Vf(m)|)dm,

|E|<e |E|<e
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in fact, |VT f| and |V f| are equimeasurable. This rearrangement appears
under may names in the literature [A],[BTal,[Ben],[Be2],[BoLe],[BroSo|,
[FrFu],[HaLitP],[So]; we will refer to it as the two-point rearrangement of
f at the hyperplane H. The two-point rearrangements of a nonnegative
function f in WP at a suitable sequence of hyperplanes converge to the
spherical symmetrization f* strongly in LP, and weakly in W1 [BTa] (see
also [B],[BroSo],[So]). Similarly, the two-point rearrangements at a suitable
sequence of parallel hyperplanes converge to the Steiner symmetrization S f.
To show the inequality for f*, fix € > 0, and let E be a set for which the
supremum on the left-hand side of (3.1) is achieved, and consider the re-
striction of the sequence of rearranged functions to E. Since the functional

fro [ F(95(e))de

is convex because F is convex and nondecreasing by assumption, it is lower
semiconinuous, and the claim follows from (3.2). O

It follows immediately from Proposition 3.1 that for every sequence { f }
obtained from a function f in WP by a sequence of Steiner symmetriza-
tions and rotations, we have

/|ka|p Xv s l>mpde < sup / IV filPde =0 (M — o)
|E|S(I|V fell,/M)P J E
uniformly in k. Note that this property is certainly necessary for a sequence

to converge in W1P: If {gk}kzo is a sequence of nonnegative functions in
LP(R9), then

63) s [(@E@re= [ Gereso -0,
|E|<e J E *

by the convergence of the sequence {g}}s>0 in LP. Here g; is the spherical

symmetrization of gz, and E* is the centered ball of measure €.

The following Lemma 3.2 will be used several times in the proof of
the continuity and convergence results. We only state it for Steiner sym-
metrization, but it holds equally for spherical symmetrization and any re-
arrangement that can be obtained as a limit of two-point rearrangements
in LP. The lemma is motivated by Theorems 7.2 and 7.5 of Almgren and
Lieb [AlLi], which correspond to the special case with f = f,: We prove
it simply as a corollary of Proposition 3.1 .

LemMMA 3.2 (Equivalence of norms). Let fi, (k> 0) and g be nonnegative
functions in W'P(R™) (1 < p < 00). Assume that each function f, is the
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result of a (finite or LP-convergent) sequence of Steiner symmetrizations
and rotations of a function fi, and let g be a measurable function with
gradient Vg. Then

fo— 3 in Wie

fr—g in measure — fr—g in WL,

Vfi — Vg pointwise a.e.

In particular, convergence in W12 for some q implies convergence in WP,

Proof. If functions and their gradients are uniformly bounded and vanish
outside a set of finite measure, the conclusion holds by dominated conver-
gence

In general, fix 0 < hy < hy, let B be the set where g > h;/2, and write
each function f; as the sum of three slices

fr =min{fe, h1}+ (min{fk, hy} — hl)_l_ + (fx — h2)+,

and similarly for g. The bottom and top slices are small in WP uniformly
in k for h; small, hy large enough, because the f; are equimeasurable with
the f, which form a convergent sequence in WP by assumption.

The restrictions of the middle slices to B converge in LP by dominated
convergence. The restrictions of the middle slices to the complement of B
converge to zero in measure, and hence in LP.

Similarly, the sequence of truncated gradients

VX v <y ¥B

converges in LP. By Proposition 3.1, the error term satisfies

[Vidgsanlp< s [ViPas
IBI<(IV fell, /M)P

< sup / |ka|pdm,

|BI<(||V fil| ,/30)7 /B

which converges to zero uniformly in k as M — oo by equation (3.3). Again,
the contribution of the middle slices outside B is small if k is large enough
by Proposition 3.1 and equation (3.3). i

4 Distribution Functions

In preparation for the proof of Theorem 1, we recall the techniques devel-
oped by Almgren and Lieb in their proof of the discontinuity of spherical
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symmetrization on WP [AlLi]. By definition, the spherical symmetriza-
tion of a function is determined by its distribution function (2.1). The
properties of spherical symmetrization in L? are easily understood from
the layer-cake decompositions (2.2) and (2.3). However, it is not so easy
use information about the level sets to answer questions concerning the gra-
dient. The principal tool for such questions is the co-area formula, which
says that for every measurable function g,

/ / gdsdh:/ g|Vf|de,
o JoE(n) R™

where dz denotes integration in R™, and ds integration with respect to
n — 1-dimensional Hausdorff measure on the boundary of the level set of
f at height h. In the general co-area formula ([F, Theorem 4.5.9]), which
holds for functions of bounded variation, the domain of the inner integral
is {z € R" | A(z) < h < p(z)}, where A(z) and p(z) are the upper and
lower approximate limits of f at . We argue as Brothers and Ziemer
(see [BrotZi, Section 2]), that, since for f in W1P the approximate limits
A and p differ only on a set of measure zero, we may integrate instead
over 8E(h) (or, alternately, over f~!(k)) if we choose f to coincide with
lim,_yo | Be|™* fB,(z) f(z)d='.

It follows with monotone convergence that

/ / g|Vf|_1dsdh:1im/ / g(|Vfl+¢€) "dsdh
o JoE(n) ¢20 Jo  JaE(h)

Note that the co-area formula gives no information about the values of g
on the set of critical points of f.

Since the distribution function of f is a nonnegative nonincreasing func-
tion, it defines a positive measure on RT. Almgren and Lieb write the dis-
tribution function as a sum of three parts: The co-area distribution function

(4.2) prea(h) = [{z € R™ | () > h, V1(z) # 0}
is the contribution of the set of regular points of f to the distribution func-

tion. It is always absolutely continuous with respect to Lebesgue measure.
The name is motivated by the formula

(4.3) preg(h):// V|~ dsdh’.
h JBE(h)

The contribution of the critical points, the residual distribution function

(4.4) perit(h) = [{z € R™ | f(z) > h, Vf(z) =0},
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is split into a singular component which grows on a set of measure zero
whose pre-image has positive measure, and an absolutely continuous com-
ponent which corresponds to the part of the set of critical values that is
smeared out continuously over the heights. Spherical symmetrization is dis-
continuous at those functions whose residual distribution function contains
an absolutely continuous component; these functions are called co-area ir-
regular. Functions where spherical symmetrization is continuous are called
co-area regular.

Sufficiently smooth functions are always co-area regular, because their
critical values form a set of measure zero by the Morse-Sard-Federer theo-
rem. The required smoothness, however, depends on the dimension. Func-
tions of a single variable and radial functions in WP are always co-area
regular (hence Coron’s continuity result for n = 1), but for n > 1, co-area ir-
regular functions are dense in WP(R™). Note that the co-area and residual
distribution functions may change under equimeasurable rearrangements,
even though the distribution function and its absolutely continuous and
singular components are preserved. Spherical symmetrization is discontin-
uous at co-area irregular functions because it removes the critical points
that produce the absolutely continuous component of the residual distribu-
tion function.

We illustrate the role of the different distribution functions with a vari-

ation of a sharp rearrangement result by Brothers and Ziemer ([BrotZi,
Theorem 1.1]).

ProrosITION 4.1 (Quantitative rearrangement inequality for convex gra-
dient integrals). Let F be a strictly convex nonnegative function on R*
with F(0) = 0. For every function f in WYP, equality in

[ Fvsiae > [F(vipe

implies that f is co-area regular, and that the level sets of f at almost all
heights are balls. In particular, we have for F(z) = 2P

P _ *||P oo o(h)? B o*(h)P
19012 [ a0 P

and for F(z) =vV1+22-1(1<p<2)
() - ¥ > [ (o) + (@/dh preg(W)? -~ [4/dh preg(h)])

— (V" (B2 + (d/dh p(R))? — |d/dh p(h)]) dh .
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Here, o(h) and o*(h) are the perimeters of the level sets of f and f* at
h, the distribution function p and py are defined by (2.1) and (4.2), and
¥(f)= [F(IVf|)dz is a substitute for the W' -norm.

Proof. With the co-area formula, we write

[Favsnee= [ / F(VF) V£ dsdh
//BE G(IV™")ds dh,

where G(z) = zF(z71) is positive, strictly convex, and decreasing, and
F(z) = 2G(z™1). Jensen’s inequality gives

[ (v > oG (o [ (957 ds)
8E(h) 8E(h)

= o(h)G(o(h) ™" (~d/dh preg(h)))

> " (B)G (o ()~ (~d/dh p(B)))
where we have used (4.3) in the second line. The last inequality follows
with the monotonicity and convexity properties of G from o*(h) < o(h)
(with equality only if the level set of f at h is a ball), and |d/dh preg(h)| <
|d/dh p(h)| (with equality for almost all k only if f is co-area regular). The
claim follows since f* produces equality in Jensen’s inequality. O

In the proof of Theorem 1, we adapt the approach of Almgren and Lieb
to Steiner symmetrization. Let f be a function on R™*! with arguments
(z,y), where z € R, and y € R®. We view the Steiner symmetrization as
the symmetrization of the family of one-dimensional cross sections f(-,y)
parameterized by the transverse coordinate y. The relevant distribution
function is

5(y,k) = [{z € R | f(z,9) > B},
where |-| denotes Lebesgue measure in R; the Steiner symmetrization of f is
determined by p. In other words, any property of f that can be formulated
in terms of p is preserved under Steiner symmetrization. We will frequently
use the one-dimensional analogue of (4.1)

Since for each fixed y, the distribution function §(-, y) is a nonincreasing
function, it defines a positive measure on R™. We decompose this measure
into a part that is absolutely continuous with respect to Lebesgue measure,
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and a singular part which is supported on the critical values of f(-,y). In
contrast with the decomposition by Almgren and Lieb, this decomposition
depends only on the distribution function g, and is accordingly preserved
by Steiner symmetrization. We will see in section 5 that the difficulty in
proving continuity of Steiner symmetrization is concentrated on the sup-
port of the singular part of the measure. We describe this support in the
following two lemmas.

LEMMA 4.2 (Critical values). Let f be a nonnegative function in W1?(R),
and and let p® be the singular part of the measure induced by its distribu-
tion function p on R™. Then, for every Borel set B,

W (B) = [{z € (B) | 4/de f(e) = 0} = |F (BN C)],
where C is the support of the singular measure u°.

REMARK. (i) We will often refer to C' as the set of critical values of f.
Note that the usual definition as the image of the set of critical points
makes sense only for differentiable functions.

(ii) The co-area regular functions on R™ are characterized by the anal-
ogous property that

p'(B) =|{z € fH(B) | Vf(z) =0} = [F7H(BNC)
for all Borel sets B, where C' is the support of the singular part of the
measure induced by the distribution function of f.

Proof. The claim follows immediately from two facts: a) The critical values
form a Borel set of measure zero by the Morse-Sard-Federer theorem ([F,
Theorem 3.4.3]); b) The derivative of a continuously differentiable function

in WP vanishes almost everywhere on the inverse image of a set of measure
zero ([AlLi, Theorem 3.1]; see also [LiLo, Theorem 6.19]). m

The essential step in our proof of Theorem 1 will be to understand the
transverse derivatives V, f on the set where 0 f/0z vanishes. It is easy to
see that the transverse derivatives are constant almost everywhere on a set
where f(-,y) is constant, that is, for almost all y € R", the set

{(m: ml) | f(m: y) = f(mli y) b vyf(m: y) 7£ vyf(m’: y)}
has measure zero, because the gradient of F(z,2',y) = f(z,y) — f(z',y)

vanishes almost everywhere on F~(0). In the proof of Theorem 1, we will
need the following stronger version of this observation.

LeEMMA 4.3 (Key lemma). Let f be a nonnegative function in W1?(R™1!),
B a Borel set in R, and C; and C, disjoint Borel sets in R™. For each
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y € R"™, define two measures on R by

pi(y, B) := [{z e R| f(z,y) € B, V,f(z,y) € C1}|
pa(y, B) := [{z e R| f(z,y) € B, V,f(z,y) € Ca}|

where V f consists of the last n components of the gradient of f, and let
p$(y) and p4(y) be the singular parts of these measures. Then, for almost
all y, pi(y) and p5(y) are mutually singular.

Proof. The idea is that the map (z,y) — (f(z,y),y) transforms a neigh-
borhood of a point where 0 f/8z = 0 into a set that has a hyperplane as a
tangent space. The hyperplane is determined by the transverse derivative
of f. Two such hyperplanes can meet at more than a point only if the
transverse derivatives coincide.

Taking countable intersections and unions, we may assume that C; and
C, are disjoint coordinate half-spaces. Integrating out » — 1 variables, we
may also assume that n = 1, so that

pi(y,B) :=|{z € R| f(z,y) € B, 8/8y f(z,y) > o}|
pa2(y,B) == |{z € R| f(z,y) € B, 8/8y f(z,y) < B}|
with a > 3. We consider only the case @« = 1, § = —1. The general case

follows by scaling and changing f(-,y) to f(-,y) + vy with a constant 7.
We will show that the measures defined on R? by

©i(B) :/Rui(y,B(y))dy, 15 (B) :/Rué(y,B(y))dy

are mutually singular. Here, B is a measurable set in R?, and B(y) is
its cross section at y. In general, two measures y; and g, are mutually
singular, if their overlap

p1 A pa = U;IER Zmin {p1(B;), p2(Bi)}

vanishes (the infimum is taken over all finite disjoint unions). In our special
case, we have

MA£=/M@A£@®-

Assume for the moment that f is continuously differentiable. Then the
sets

Dll
Dg:

(e,y) € R* | 8/8y f(2,y) > 1}
(z,y) € R? | 8/dy f(=,y) < -1}

{
{



Vol. 7, 1997 STEINER SYMMETRIZATION IS CONTINUOUS IN W!.F 15

are open. We can cover Dy and D, with countably many closed squares that
satisfy the following compatibility condition: Any pair of squares can be
subdivided into a finite number of smaller squares, so that the projections
of each pair of smaller squares to the y-axis either coincide, or intersect
in at most one point. (Such a covering can be constructed with dyadic
subdivisions of a fixed grid on RZ2.)

We will show that the singular part of the measures induced by the
restrictions of f to any pair of squares )1 C D; and Q3 C D, are mutually
singular. This will prove the claim when f is continuously differentiable.

Let @, and @2 be a pair of squares from the covering of D; and D,
that have the same projection to the y-axis. (For pairs of squares whose
projections intersect in at most one point there is nothing to show.) By
Lemma 4.2, the singular parts of the measures induced by the restrictions
of f to Q1 and ), are just the measures induced by the restrictions of f to
the subsets QF and @3, respectively, on which 8f/8z vanishes.

Fix € > 0. Since @} and Q$ are compact, we can bound |0f/0z| in
a d-neighborhood of @ and Q4 by € if § is small enough. We cut the
squares (1 and @), into vertical strips of equal height . Fix a pair of such
strips, one in ()1, and one in Q5. By definition of ¢); and @), the images of
these strips under (z,y) — (y, f(z, y)) satisfy the hypotheses of Lemma 4.4
proved below. If the intersection of the image strips contains a point (yo, k)
where y is a critical value for the restriction of f(-,yo) to the strip in Q; as
well as for the restriction to the strip in )2, then, by our choice of §, the
width of the image strips at yo is at most €§. By Lemma 4.4, two strips can
intersect only for ¥ in an interval of length at most €4. The contribution
of any pair of strips at a given y to the overlap pf(y) A p3(y) is at most 4.
Hence, that the total contribution of the strips to uf A uj is at most eé2.
If the intersection of the image strips contains no such point, then the two
strips do not contribute to uj A uj by Lemma 4.2. Summing over the strips,
we see that the contribution of ¢); and @ to the overlap is bounded above
by €l?, where [ is the side length of Q; and Q3. This completes the proof
for differentiable f.

To finish the proof for general f € WP, note that for any ¢ > 0, we
can find a continuously differentiable function f that differs from f on a
set of measure less than ¢ (see [F, Theorem 3.1.16]). The measures ji] and
j15 induced by f differ from ui and pj by at most €, and the same is true
for their overlap. Since € was arbitrary, the claim is proven. |

LEMMA 4.4 (Intersection of strips). Let [a1(y), b1(y)] and [a2(y), ba(y)] be
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two families of intervals, where a;(y) — y and b,(y) — y are monotonically
increasing, and ax(y) + y and ba(y) + y are monotonically decreasing for y
in a given interval. Then [a1(y), b1(y)] and [a2(y), b2(y)] intersect for y in
an interval of length at most (b1(yo) — a1(yo) + b2(yo) — a2(yo))/2, where
Yo is any point for which the intersection is not empty.

Proof. We may assume that yo = 0. The intersection is empty unless
ba(y) > a1(y) and b1(y) > a2(y). The monotonicity assumptions imply
that for the intersection to be nonempty, we need b2(0) — y > a1(0) + y for
y > 0,and b;(0)+y > a2(0) —y for y < 0. i

Lemma 4.3 immediately implies that the set of critical points cannot
shrink under Steiner symmetrization.

COROLLARY 4.5 (Steiner symmetrization preserves the measure of the set
of critical points). Let f be a nonnegative function in WHP(R™*!), and let
B be Borel set in R*. Then
‘{m eR|Sf(z,y) € B, VSf(z,y) = 0}‘
=[{z € R| f(z,y) € B, Vf(z,y) =0}
for almost all y € R™. In particular, Steiner symmetrization preserves the

co-area distribution function p,.q and the residual distribution function
function p.ri+ of f defined by equations (4.2) and (4.4).

Proof. Let C be a Borel set in R™, and let u; be the singular part of
the measure induced by the restriction of f to the set where V,f € C.
Lemma 4.3 is equivalent to the more general statement that pg, does not
change under Steiner symmetrization, that is,

{z € R| f(z,y) € B, 0/0z f(z,y) =0, Vyf(z,y) = 0}]
=[{z€R|Sf(e,y) € B, 0/02zSf(z,y)=0, V;Sf(z,y) = 0}

for almost all y. |

5 Continuity

Our strategy for the proof of Theorem 1 is to reduce all considerations
to calculations with functions of a single variable. We think of the given

function f(z,y',...,y"), its partial derivatives, as well as Sf and its par-
tial derivatives as functions of # that depend on the parameters y =
(y',...,4™). We use Coron’s result to show that the partial derivative

in the z-direction transforms continuously under Steiner symmetrization.
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For the partial derivatives in the transverse directions, we find a formula
that can be calculated for a fixed value of y directly from the restriction of
f and its partial derivatives to the cross section at y. At regular points of
the restriction of S f to the cross section, this becomes an explicit formula,
and we can easily prove continuity. To understand the behavior at critical
points, we use our results from section 4.

Since the Steiner symmetrization of f is defined by rearranging the cross
sections f(+,y), the partial derivative 8/0z S f(-,y) can be calculated from
f (-, y) without any information on neighboring cross sections. The formula
is

9 A\t
61 gsien=2( X @oesen) .
£:f(&v)=F(z)
with the convention that 8/0z S f(z,y) = 0 whenever 8/0z f(£,y) = 0 for

one of the terms in the sum (see [Co]). By the rearrangement inequality
for the derivative in one dimension,

In the next lemma, we prove the less obvious fact that also the transverse
derivatives V, S f(-,y) are determined by the values of f and its partial

14 14

dez .

derivatives on the cross section. Our formula says that, for almost all cross
sections y, the transverse derivatives of S at a point (z,y) are the averages
of the transverse derivatives of f over the set where f(-,y) = f*(z,y); in
other words, it is the expected value of the transverse derivative on the
cross section, conditioned on the value of f.

LeMMA 5.1 (The transverse derivative of Sf). Let f be a nonnegative
function in WP with Steiner symmetrization Sf. Then

(5.2)
/vysf(m:y)X{Sf(z,y)eB}dm = /vyf(m:y)x{f(m,y)eB}dm

and

(5.3)
/IVySf(w,y)lp X(s§(zy)eBrde < /|Vyf(m,y)|p X{f(zy)eBrd®

for almost all y, and all Borel sets B € R*. Moreover, V,(Sf)(z,y) de-
pends on z only through f(z,y), that is, there exists a function o : R — R"
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so that
(5.4) V,Sf(z,y) = a(y, f(z,y)) almost everywhere.
Properties (5.2) and (5.4) uniquely determine V,Sf in LP(R").

Proof. We may again assume that n = 1. To show formula (5.2), it is
sufficient to consider the case where B is an interval, B = (hq, hp) with
0 < hy < hy. The slice f defined by (2.4) satisfies

a0 0
/ a_y f(m: y)dm = / a_y f(m: y)X{f(z,y)EB}dm )

and similarly for the rearrangements. But for almost every y,

/ F (2, 9) m_hm/fwy+5) f(ac,:t/—cs)dac

26 '
which is unchanged under Steiner symmetrization since S f(+, y) is equimea-
surable with f(-,y). Inequality (5.3) holds because S acts as a contraction
on LP(R).

To see the formula (5.4), note that the set where S f(-,y) takes a given
value h consists either of two points, or of two intervals of equal length. If
the set consists of two points, (5.4) automatically holds by the reflection
symmetry of Sf. If the set has positive measure, the transverse derivative
0f/0y is equal to a constant almost everywhere on the set by Lemma 4.3.
Inequality (5.3) and identity (5.2) imply that 0 Sf/0y on the set where
Sf(-,y) = h equals the same constant.

Uniqueness follows from formulas (5.2) and (5.4) by choosing B to be a
small interval of the form (h — e, h + ¢) and taking the limit £ — 0. O

As discussed above, the point of Lemma 5.1 is that the transverse deriva-
tives V, S f(+, y) can be defined for fixed y using only information on f(-,y)
and V, f(-,y). We introduce new notation to suppress the dependence
on y. For every ¢ € W1P(R), define an operator 7(¢,-) on LP(R) by

(55) Jpprigy TGO [ ey

for all Borel sets B C R*, and the requirement that for every ¢ and
there exists a measurable function « so that

(5.6) T(¢,%)=caog¢ in WP,
By Lemma 5.1, T(f(-,y),8/8y" f(*,y)) coincides with 8/8y*Sf(-,y) for

almost every y. By construction, 7 (¢, -) is linear and order-preserving on
LP. 1t is a contraction, because the value of T(¢, ) on the set where of



Vol. 7, 1997 STEINER SYMMETRIZATION IS CONTINUOUS IN W!.F 19

S¢ = h is a weighted average of the values of ¢ on the set where ¢ = h.
Moreover, if ¢ = a0 @, then T (¢, ¥) = 9.

LemMMA 5.2 (Continuity of 7). The operator T defined by equations (5.5)
and (5.6) has the property that for every pair of sequences ¢ — ¢ in
WLP(R), ¢ — ¢ in LP(R), there exists a subsequence (again denoted by

(¢r, ¥r)) so that
T (o, Yr)X(asg/dezoy = T (9, V) Xidsp/dazroy  (k — 0)

pointwise almost everywhere.

REMARK. It is not hard to see that the sequence {T (@&, k) X{dsp/dzz0} k>0
actually converges in LP. In particular, if the derivative of ¢ vanishes on a
set of measure zero, then 7 is continuous at (¢, ¢) for any . If it vanishes
on a set of positive measure, then 7 is continuous at (¢, ¢) only if the two
functions satisfy certain compatibility conditions. We will use Lemma 4.3
to show that these compatibility conditions are always satisfied if ¢ is the
transverse derivative of ¢.

Proof. Since T (¢, ) is a contraction on LP, we need to prove only that

T (¢r: %) X{asp/dzroy = T (S, ¥)X(asg/dzzoy in LP  (k — 00),
where 9 is a smooth function with compact support. Fix a regular point z
of §¢, that is, a point where the derivative is defined and nonzero. Then
¢~ 1(h), where h = S¢(z), is discrete. Taking the limit & — 0 in formulas
(5.5) and (5.6) with B = (h — €, h 4 ¢€) gives
(5.7)

~1
TonE = ( Y @aes@)”) Y (@/aese) v,
¢cop~1(h) ¢cop~1(h)

Let €1, ..., & be the pointsin ¢~1(h) , and let Iy, ..., I; be small open inter-
vals containing them. Choose é so small that ¢~ (h — 6, h+ 4) is contained
in those intervals. For the given sequence {¢;} that converges to ¢ in W1P
as k — oo, let hg := S¢pr(z); this converges to h as k — oco. Moreover, by
the locally uniform continuity and the locally uniform convergence of the
¢, we see that ¢,:1(hk) is contained in the intervals Iy, ..., I; for k large
enough.

Now we apply Coron’s result that S¢p converges to S¢ as & — oo.
By passing to a subsequence, we may assume that the gradients converge

pointwise almost everywhere, and in particular, that almost every regular
point of S¢ is a regular point of S¢, for k large enough. Choosing functions
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dr; € WP (j = 1,...,1) to coincide with ¢y on I; and with ¢ on I; (i # j),
and to take values outside (h—4é, h+4) on the complement of the I;, Coron’s
result says that

1 -1
(X 2 @ea©)?) (X @heee)™) (-

togedy; (hi)NI; :

(see formula (5.1)), that is,

Yo (d/de¢(®) T - (d/de(z;) T (k—o0).
¢edit (he)nI;

Since 1 is continuous by assumption, it follows that

D (d/degr(€))H(E) » (d/dw b)) H(E) (ko 0).
éedy t (hi)n;
This proves pointwise convergence almost everywhere on the set of regular
points of S¢. O

Proof of Theorem 1. Let {fi}r>0 be a sequence of nonnegative functions
on R™*! that converges to a function fin WHP. We want to show that S fj,
converges to Sf in WP, Since it is well known that Sf; converges to Sf
in LP as k — oo, we see from Lemma 3.2 that we need to show only that
there exists a subsequence along which VS fi(+,y) converges to VS fi(-, y)
pointwise almost everywhere for almost every y. Coron’s continuity result
for symmetrization in W1P(R) implies the desired convergence for the par-
tial derivative 8/0z Sf(-,y) in the direction of symmetrization. To prove
the convergence of the transverse partial derivative 8/8y* f(-,y), we need
to consider only z and y* as variables and may treat the other variables
y? (j # i) as parameters. This shows that Theorem 1 holds for all n > 1
provided it holds for n = 1.

Assume now that n = 1, that is, f is a function on the plane. Lemma 5.2
says that 8/0y S fr(-, y) converges to 8/0y S f(-,y) pointwise almost every-
where on the set of regular points of Sf(-,y). We now turn to the con-
vergence on the set of critical points. We can write with the layer-cake
principle

a o0
3_y f(m: y) = A X{% flzy)>a} — X{% Fzy)<—a} da
so we need to prove

T (frs Xnr) X(o5p/80=0y = T (f, Xnr) X(554/02=0} in LP (k — o0)
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where M is a level set of 8f/0y. Clearly,
0 < T(fkXm) <1

by the properties (5.5) and (5.6). Choose B in (5.2) to be the support of
the singular part of the measure induced by the restriction to M. Using
Lemma 5.1 and Lemma 4.3, which says that this component of the measure
is singular with respect to the components induced by the restriction to the
complement of M, we see that

/T(f(: y): XM)X{B/Bz_f(z,y)ZO}dm = / T(f(: y): XM)X{S_f(z,y)EB}dm

= / Xm (2) X(f(2,y)eB}dT

= |{z | f(2,y) € B},

in other words, T(f(,y), Xar) restricted to the set of critical points is a
characteristic function. The following Lemma 5.3 with

gk = T(fk(’ y)7 XM)X{B/Bmf(-,y)ZO}

completes the proof. |

LeEMMA 5.3 (Convergence to characteristic functions). Let {gr}x>1 be a
sequence of functions in LP(R) (1 < p < oo) which converges weakly in
LP to a characteristic function X4. Assume moreover, that 0 < g(z) < 1.
Then there exists a subsequence that converges pointwise almost every-
where to X,. Equivalently, for all sets B of finite measure, gy Xp — XanB
strongly in LP.

Proof. Weak convergence of gpXp to X4np implies that

liminf/ (9r(z))Pdz > |ANBJ,
B

k— o0

and the other assumption that

limsup/ (gk(z))Pdz < lim [ gp(z)Xp(z)de = |ANB|.
k—oo JB k—00

For p > 1, convergence of the norm together with weak convergence im-
plies strong convergence. For p = 1, we use that, since the g are uniformly
bounded, and B has finite measure, all LP- norms are essentially equiva-
lent. |
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6 Sequences of Steiner Symmetrizations

We now turn to the problem of approximating spherical symmetrization
by a sequence of Steiner symmetrizations. We were led to consider this
problem by an argument of Michael Loss [Lo] which showed that the conti-
nuity of Steiner symmetrization alone implies that such an approximation
is not possible in WP for functions at which the spherical rearrangement
is discontinuous.

Another argument for the same fact goes as follows. Let {fix}x>0 be a
sequence of functions obtained from a nonnegative function f in Wwie by
a sequence of Steiner symmetrizations and rotations. Since Steiner sym-
metrization does not change the co-area regular distribution function p.q
defined by (4.2), Proposition 4.1 implies that

* k()P a*(h)?

kap—Vf*p:/ T — =
Wl =T Jy Ta7ah WP ™ 72 7

‘e 1 S
JARLC 4/ah preg (R |d/dhp<h>|"—1)dh’

which is strictly positive if p > 1 unless f is co-area regular. (For p =1,
we use the convex functional ¥ in place of the norm.) This implies, first,
that the spherical rearrangement of a co-area irregular function cannot be
approximated by Steiner symmetrizations, and secondly, that it is certainly
necessary for convergence of an approximating sequence that the level sets
converge to balls.

It is known that most sequences of Steiner symmetrizations and rota-
tions produce sequences of functions that converge to the spherical rear-
rangement in L? [M], the only exceptions being those that violate an er-
godicity condition. We suspect that, similarly, most sequences should give
the convergence properties claimed in Theorems 2 and 3, but, for technical
reasons, we will choose sequences of symmetrizations that depend on the
function being symmetrized.

We find it convenient to change notation (as compared with section 2).
We write points in R as z = (2°,...,2") = (2° 2) with 2z° € R and
2z € R"™, and denote Steiner symmetrization with respect to the coordinate
axes by 8%, ..., S™. We define a sequence of symmetrizations corresponding
to a given sequence of rotations {Rx}x>1 by

(6.1) Sk = Sn---SORk.

Let f be a nonnegative measurable function whose level sets have finite
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measure. We define a sequence of symmetrizations { fx}x>0 of f by

(6.2) fo=Ff, fo=Skfe-1-
We use the co-area formula to reduce the statements of Theorems 2 and 3 to

statements about level sets. If A is a level set of f, then the corresponding
level set of fr is determined by

(6.3) Ao=f, Ar=3S8rAr_1.

By construction,

(6.4) St 8%A={z e R" | 2% < a(2)}

for some function @ on R™ which is nonnegative, symmetric under reflection
through coordinate planes, and nonincreasing in the variables (|z1] ,..., [Zn])-

If A is contained in a ball of radius R, then a is bounded above by R, and
has support in the ball of radius R.

It is well known that there are many sequences of rotations for which
the sequence of sets defined by (6.3) converges to a ball with respect to both
symmetric difference and Hausdorff distance [H]. For instance if, for all &,
R equals a fixed rotation R which satisfies the ergodicity condition that
together with the reflections at the coordinate hyperplanes it generates a
dense subset of the rotation group O(n), then then there exists for each
d > 0 a number ko (which depends only on the ratio R/r) so that for every
subset A of the ball of radius R,

(6.5) B,.(l_(;) C A™ C B?‘(1+5)
for all k > kq. Here, r denotes the radius of the ball equimeasurable with A.

Similarly, it is clear that for f €¢ WP, the sequence {f3} is bounded,
and hence has a subsequence that converges weakly in WP, If we pick the
sequence of rotations so that f, converges to f* in LP, the weak W1P-limit
must be f*. Another consequence of the LP-convergence is the following
lemma.

LEMMA 6.1. Let f be a nonnegative function in LP, and let { fy}x>0 be a
sequence of rearrangements of f so that the level sets of fi, converge to the
level sets of f* in the sense of (6.5). Let F' be a Borel measurable function
for which [ F(f)dz is finite. Then
F(fe) — F(f*) in L' (k— o).

Proof. Decomposing F' into its positive and negative parts and using the
layer-cake principle, we see that it is sufficient to prove that
(6.6)

f71(B) — f*Y(B) in symmetric difference (k — oo)
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for all Borel sets B. Our assumption on the convergence of the level sets
implies that (6.6) holds for intervals B = (a, b]; it holds for the complement
of a set if it holds for the set, and it holds for unions of chains of sets by
monotone convergence. Hence it holds for the algebra of finite unions of
intervals and their complements. We extend (6.6) to all Borel sets with the
monotone class theorem (see, for example, Theorem 1.3 in [LiLo]). i

LemMMA 6.2 (Lipschitz parameterization). Let A be a subset of the ball of
radius R whose boundary is given by monotone functions as in (6.4). For
€ > 0, let C, be the complement of an g-neighborhood of the coordinate
hyperplanes in S™, and C, the corresponding cone in R™t!. There exists a
number L (which depends only on €) so that the boundary of A is given in
polar coordinates by a function which is continuous on 5™, and Lipschitz
continuous with constant LR on C’E.

Proof. We may assume that R = 1. The angle between the normal of A
at a boundary point # with the position vector is at most 7/2 — . The
Lipschitz constant is L = (1 + 4) tan (7w /2 —¢) . O

Equation (6.4) also leads to an upper bound for the perimeter.

LEMMA 6.3 (Surface area of the graph of a monotone function).  The
surface area of the graph of a monotone function o from the n-dimensional
box [0,a;] X - X [0, ap) to [0, ant1] is at most 37 11,4 a5

Proof (by induction over the dimension). For n = 0, the graph is a single
point, and there is nothing to show. Assume the claim has been proven for
dimension n—1, and let a be a function on the n-dimensional box. We may
assume by approximation that « is differentiable and strictly decreasing in
the sense that

<z (t=1,...,n), z'#z= o) > a(z).

With the co-area formula (4.1) we estimate the surface area of the graph
of a by

ay An ay an
/0 /0 \/1—|—|Voz|2dm1,...,dmn§/0 /0 1+ |Va|dz; ..., dz,
n Ant1
:Hai—l—/ / 1dsdh.
— 0 a~1(h)

Since the boundaries of the level sets of a are again graphs of monotone
functions, we can apply the inductive hypothesis to complete the proof. O
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7 Convergence of Wll-norms and Perimeters

In this section we prove that for a given nonnegative function f that van-
ishes at infinity, there are sequences of Steiner symmetrizations and ro-
tations that approach the space of radial functions in the sense that the
angular component of the gradient converges to zero. We first reformulate
the statement of Theorem 3.

ProPOSITION 7.1 (Convergence of the Wh!-norm). Let f be a nonnega-
tive measurable function in WHP(R"!) for some n > 1 and some p > 1.
Assume that f vanishes at infinity. There exists a sequence of functions
{fe}r>0 which is obtained from f by a sequence Steiner symmetrizations
and rotations as in (6.2) so that for every 0 < hy < hg, the slices of f* and
fr defined by (2.4) satisfy

fo— ffin L', f — frweakly in W, || fellia — | F* i (B — o0).

Proof of Theorem 3 (given Proposition 7.1). Replacing f by a slice as in
(2.4), we may assume that it is a bounded function with compact support.
By Lemma 3.2, we only need to show that |V fi| — 8 f,/0r converges to zero
in L'. Using the one-dimensional co-area formula in polar coordinates, we
see that

H|ka|—3fk/3rH1:/Sn/0 (IV fx| — 8 fx/0r)r™dr d6
- ||ka||1—/0 /an(e,h)"dedh,

where (0, h) is the parameterization of the boundary of the level set at
height h in polar coordinates. By Proposition 7.1, the first term converges
to ||V f*||;. But since the function (6, h) converges uniformly to the radius
of the level set of f* at height h, the second term converges to the same
limit. |

We need some more notation for the proof of Proposition 7.1. We
denote the Lebesgue measure of a measurable set A C R™"! by |A|, and
the perimeter of A by o(4). To be specific, our definition of the perimeter
of A will be

o(A) :=lime '|(A+ B.)\ 4],
e—0

where B, is the centered ball of radius €, and A + B. is the set where
the convolution of the characteristic function is positive (that is, the e-
neighborhood of the set of density points of A). However, since the se-
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quence of symmetrizations defined below quickly transforms A into a set
with Lipschitz boundary by Lemma 6.2, any of the common definitions will
do. The Brunn-Minkowski inequality implies that the perimeter never in-
creases under Steiner symmetrization; it must strictly decrease unless A is
(up to a translation, and except for a set of measure zero) already symmet-
ric under reflection at the hyperplane of symmetrization. If C is another
measurable set, we will denote by

o(AC) = lime ™ [((A+ B.) N C) \ 4]

the peritmeter of A in C.

By the co-area formula, the proof of Proposition 7.1 amounts to showing
that the perimeter of all level sets of the f,, converges to the perimeter of f*.
Conversely, if A is a bounded star-shaped set, we can write 0(4) = 2 ||V f||;,
where f is defined by

£(=) ::{ (1)—inf{)\>0|)\_1mEA} z;j'

(If A is not star-shaped, we replace it by S™---S%A). Since f satisfies the
assumptions of Proposition 7.1, there exists a sequence of symmetrizations
{Ag} of A whose perimeters converge to the perimeter of A*.

The main idea in the proof of Proposition 7.1 is the observation that,
although Steiner symmetrization is not a local transformation, its effect on
a set that is close to a ball in the sense of (6.5) can be localized in polar
coordinates.

LEMMA 7.2 (Localization). Let C; C C, be two cones in R™"! which are
symmetric under the reflection (z°, 21, ... 2") — (—z%z!,...,2"), and let
Cl and Oz be their intersections with S™. Assume that Cl has distance at
least € from the complement of Cs.

For every € > 0 there exists § > 0 (which does not depend on Cy, Cy,

r, and n) and a set of the form
D={zcR"! |2°c R, i €D}

where D is a subset of R™, so that for every measurable set A satisfying
(6.5), we have the inclusions

ANC; C AnD C ANCGC;.

Proof. 1t is sufficient to prove the claim in the case where Ciis a pair of
points and Cj is an e-neighborhood of C;. Performing a rotation about the



Vol. 7, 1997 STEINER SYMMETRIZATION IS CONTINUOUS IN W!.F 27

2%-axis, we may assume that the pair of points lies in the z° — z!-plane.

Suppressing the coordinates z2, ..., z%, we write

Cy = {(£rsing,cosg)}, Cy = {(sin6,cos0) | |6] — ||| < €},
where ¢ is a fixed angle in [0,7/2]. If é is so small that
(140)cos(p+¢€) < (L—6)cos(p), (1+d)cos(p) < (1—6)cos(¢—e),
we can choose D = [(1 — 8)rcos ¢, (1 + 8)r cos ¢] . O
LemMMA 7.3 (Local perimeter estimate). Let A be a measurable set in

R™, let C1, C3, and & be as in Lemma 7.2, and assume that A satisfies
relation (6.5). Then

o (S°A|CY) < a(4]C,)
o(S°A|C3) > a(A|Cy) — a(A) + a(S°A) .

Similarly, if f is a function in W11 so that all level sets of f satisfy (6.5),
then

VS°f|dz < / V7| de
Cl C41

VS f|dz > / VFlde — [VF], + [ VS°Fs
Cz C41

Proof. The first line follows directly from Lemma 7.2 and the fact that
S°(AnD)=(S°4A)nD,

to prove the second line we make the same argument for the complement

of D. The claims for f follow with the co-area formula. |

We next prove that perimeter of a set that has been symmetrized suf-
ficiently often to be close to a ball in the sense of (6.5) is close to the
perimeter of a ball at least in some sectors of space. We use the fact that
the boundary of Ag can be written as the graph of a monotone function as
in (6.4).

LEMMA 7.4 (Area of a polar cap). Let
ng = {z € S" ‘ 2’ >0, |#| < sing}

be the polar cap of opening angle ¢ on the unit sphere in R™ (n > 2), let
Cy the corresponding cone, and let A be a set of the form (6.4) that is close
to the ball B, in the sense of (6.5). If ¢ is small enough and 6§ < ¢?, then

(7.1) o(ACg) < (1+¢) o(A"[Cy).
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Similarly, if f is a nonnegative function in W' so that all level sets satisfy

(6.4) and (6.5) with é and ¢ as above, then

(7.2) /C|Vf|d:c§(1—|-s)/ VF*|de

Ce
Proof. The boundary of A in Cy can be written as the graph of a monotone
function over the disc of radius (1+4)rsin ¢. We can continue this function
monotonically to the smallest square containing the disc without changing
the total variation. Lemma 6.3 gives

e (L)) [ (146— (1 8)cosg
oaicg) < |5 D (14 o ; ).

which together with

. 1 (rsing)™
o(47(Cy) > |57 TS

implies the claim (7.1). Inequality (7.2) follows with the co-area formula. O

Proof of Proposition 7.1. Let f be a nonnegative function in W'! that
vanishes at infinity. Fix ¢ > 0. We will construct a finite sequence of
rotations {R;}1<j<k so that all level sets of f satisfy

(7:3) IVFilly < (X +e) IV

for 7 > k. Since the norm cannot increase under symmetrization, we need
to prove the claim only for 7 = k.

By Lemma 7.4, there exist positive numbers 8¢ and ¢q, so that, if the
level sets of f satisfy (6.5), then

(7.4) / IV £l de < (1—|—5/3)/ IV £*| de

Cy Cy
for all § < dg, ¢ < ¢, where Cy is the cone of opening angle ¢ centered at
the z%-axis. We choose two such cones C; C C» whose opening angles are
close enough so that

(7.5) (1—|—€)/C Vi lde > (1+26/3) [ VFde.

Then we choose § < §g so small that Lemma 7.3 holds with C7, Cs, and 4.

We would like to perform a sequence of Steiner symmetrizations and
rotations so that all level sets of fi satisfy (6.5) with the chosen 4. This
will in general not be possible because the convergence of level sets to balls is
uniform only for sets so that R/r is bounded above, where R is the radius
of the smallest ball containing the set, and r the radius of its spherical
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symmetrization. However, we may approximate f in W'! by a slice f as
in (2.4) with an error that is as small as we please. Since we assumed that
f vanishes at infinity, we can choose the heights h; and ks so that f has
compact support, and the sizes of level sets are bounded away from zero.
If k is large enough, all level sets of f;, satisfy (6.5) and consequently (7.4).
If fi already satisfies (7.3), we are done. Otherwise, there exists a rotation
R so that

(7.6) / VR fde > (1 —|—€)/ IV |de

Cy Cy

We set Ri+1 = R, and define Sg41 and fi41 by (6.1) and (6.2). Combining
Lemma 7.3 with inequalities (7.4), (7.5), and (7.6), we see that

IV felly = IV fiesally > VR Flls — VSR Falls
> / VR Fulda - / VSR f,|de
Cl CZ

> /3 / |V f*|de > 0.
Cs

The claim (7.3) will hold after repeating the last step finitely many times.
Our construction also guarantees the convergence in L! and the weak con-
vergence in Wh!, since (6.5) holds with § as small as we please for k large
enough. |

REMARK. The sequence {fi} constructed in the proof of Proposition 7.1
satisfies

/ |V fe| de — / |V f*| de (k — o0)
C C
for all open cones C' in R™!. Similarly, if A is a bounded set, there exists

a sequence {Ag} as in (6.3) so that
o(Ax|C) — o(A*|C) (k — o0) .

8 Symmetrization of Co-area Regular Functions

Let f be a nonnegative co-area regular function in WP that vanishes at
infinity. We will construct a sequence of Steiner symmetrizations and ro-
tations by (6.2) that approximates f* in W12,

Following Almgren and Lieb [AlLi], we use the functional

¥(f) ::/(\/1+|Vf|2— l)dm
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in place of W1P-norms to indicate convergence or divergence of a sequence
in WP If f has compact support, ¥(f) gives the surface area of the graph
of f, minus the measure of its support. Note that

F(z)=v1+22-1

is strictly convex and increasing for all positive z, and F(0) = 0. In par-
ticular, ¥(f) can only decrease under Steiner or spherical symmetrization
of f.

Our strategy is to symmetrize a given function f until we arrive at a
function fi for which ¥(fi) can only decrease very little under any Steiner
symmetrization. Using an explicit lower bound for the drop in ¥ under
Steiner symmetrization, we show that the gradient of such a function re-
stricted to a level surface is close to a constant.

This is not enough to ensure convergence in general, because the co-
area formula gives no information about the set of critical points. If f is
co-area regular, however, convergence of fi to f* in LP implies that the
set of critical points of fi converges to the set of critical points of f* in
symmetric difference, since the sets of critical points of fr and f* differ by
sets of measure zero from and f; ' (C) and f*~'(C), where C is the set of
critical values discussed in Remark (ii) after Lemma 4.2, and Lemma 6.1
applies.

LeMMA 8.1 (Convergence of surface area). Let f be a function in W'
There exists a sequence of rotations {Ry}r>1 so that for f defined by (6.2),

s%p(\Il(fk) ~¥(S"Rfp)) -0  (k— o),

and, moreover,

for FPin Lt felly = 10y (B—00).

Proof. We construct the sequence recursively. Set k; = 1. Since the surface
area can only decrease under symmetrization, any sequence of the form
(6.2) satisfies

(8.1) U(fi) — ¥(S"Rfi) < ¥(fu) — inf lim ¥(fi1)

{Rl} > 00
for every rotation R. Assume that f, ..., fi; are already given. If j is even,
we choose the next terms in the sequence of rotations Rk; +1,...,Rg;,,
so that

(fiyer) < 3 (%) + jnf. Jim ¥ (fi;1)
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that is,
Y(fej0) — {1nf} lim \Il(kaI_H) ( (fr;) — 1nf} hm (i, -|-l))

where the infimum is taken over all possible continuations of the given finite
sequence of rotations. If j is odd, we apply Proposition 7.1, and choose the
next terms in the sequence of rotations so that

[ Frjin iy < ANl +277
By the monotonicity of the norm, this inequality will hold for all later terms
in the sequence. Repeating the last two steps, we can produce a sequence
of rotations along which the right hand side of (8.1) converges to zero, and
which satisfies the conclusion of Proposition 7.1. O

LeMMA 8.2 (The drop in surface area). Let f be a nonnegative function in
WLP(R™1). Assume that for & in some open set B and all h; < h < h, the
equations f(z) = h, (z!,...,2") = & have exactly two solutions, =z (&, h)
and £~ (£, h), that 8/8z° f(z*) < 0, 8/8z° f(z~) > 0, and that the angles
of Vf(z(&,h)) and V f(zT (&, h)) with the line & = const are uniformly

bounded away from /2. There exists a nonnegative continuous so that

¥(f) - ¥(S°f)

ha
> /h /BG(|Vf(m+)|a |Vf(w_)|)Xd/dzo Fa+)20Xd /dat f(a—)z0dE dB .

The function G has the properties that G(z,w) = G(w, 2), G(z,w) = 0 &
z = w, and for fixed z, G(z,-) increases with w for w > z, and decreases
for w < z.

Proof. By formulas (5.1) and (5.7), the derivatives of the Steiner sym-
metrization satisfy

|d/de®s*(3*)] 7 = §(1d/de®F (@) + |d/da’f (=) )
and
|d/dz°87 (&%) | VaSO f(et, &)
= 3(/d/de®f ()7 Vs f(2™) +1d/dz’ f(=z7) |7 Vaf(=T)),
where &t and Z~ are the points on the level surface of S°f corresponding

to T and z~, that is, the two solutions of the equations S°f(z) = A,
(z',...,2") = &. By the one-dimensional co-area formula (4.5), we obtain

ha
B(f) — B(S°F) / / (0,V(z*), V(")) + F(1, V£(z"), VF(z))

~2F(1/2,V{(z"), Vf(27))) X0 f(at)20XV (o) 20dE dPr,
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where for u,v € R*! with 4° < 0 < 9°,

—u v°
FOu,v)= (A — (u°)7? U + ( 0
1 1 Rrt2
Note that F' is strictly convex in A unless (—u?, @) = (v°, %). Setting
G(z,w) = inf (F(0,u,v) + F(1,u,v) — 2F(1/2,u,v))

[u|=2,|v|=w,u® >c|d|,v® >c|5]
where ¢ is a sufficiently small positive constant, we see that G has the
claimed properties. |

LemMMA 8.3 (Change of coordinates). Assume that S is a surface that can
be parameterized in polar coordinates by a positive function on S™ which is
bounded above by R and Lipschitz continuous with constant LR. Choose
¢1 so small that for || < c1R, the line determined by (§,w) intersects S
transversally in a pair of points which we denote by z%1(£,w) and z~ (£, w).

There exists a constant cs which depends only on L and the choice
of ¢1, so that for every nonnegative measurable function H on S X S which
is symmetric under exchange of the two variables, the inequality

/ o H(m+,m_)X{|£|<clR}d§dw

B R"//H £)) X(¢(s,t)<crRyds dt

holds. Here, z(s) and z(t) are the points in R"*! corresponding to s and t,
and £(s, t) is the distance of the line through z(s) and z(t) from the origin.

Proof. The claim follows immediately from the fact that the transformation
(&,w) — (27 (&, w), z7 (£, w)) is Lipschitz continuous with Lipschitz inverse
by our transversality assumption. |

LEMMA 8.4 (Convergence on level surfaces). Let {fr}r > 0 be a sequence
of functions constructed by rearrangements as in (6.2), and let G be the
function of Lemma 8.2. If

hz
/ / / G|V fily (5, 1), IV ful (¢, B))dsdtdh — 0 (k — o0),
h JoEn) JoE(n

then

ha
// F(IVfie(s,h)) —c1(h)| |Vfe| Fdsdh -0 (k— o0),
k1 JOEy (h
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where Ey(h) is the level set of fi, at height h, c¢1(h) is defined by
2¢2(h)? : —1 -1
ci(h)= ——+=, ca(h):=1limo / F(IVfe]) IV fe|” ds,
( ) 1— Cz(h)z ( ) b—>oo k BEy (k) ( )
and oy (h) is the perimeter of the level set of fi, at height h.
Proof. The limits

o(h) :== lim ox(h), cs(h):= lim F(V i) |V fel ™ ds
k—oo k—oo 8E(h)
exist for every h, since both sequences decrease monotonically with k by
the usual rearrangement inequalities for the perimeter and for ¥. By the
properties of G,

inf Ga,
[p(e)—b(B)[>2 ()

is positive for z > 0, and nondecreasing; multiplying it with a strictly
increasing function less than one, we see that

G, B) > G(|(e) — #(B))

where G is a strictly increasing nonnegative function. Assumption (8.2)
implies that ¢(|V fi(s, h)|) — ¢(|V fe(t, h)|) (as a function of s,t, and h)

converges to zero in measure. Since ¢ is bounded, it follows that

/ / |6(|V fr]) — ca(h)| dsdh
by JBE,(R)

ha
:/ o'k_l(h)/ / ‘¢(|ka(s,h)| - ¢(|ka(t,h)|)‘2dsdtdh
h 8E(h) J 8B, (h)

-0 (k — 00).

Hence, on almost all level surfaces of f, ¢(|V fr|) converges in measure to
the constant cy(h). It follows that on each level surface, |V fi| converges
in measure to a constant c4(h), which may be infinity. Calculating ¢;(h) =

F(ca(h)), and ca(h) = F(ca(h))/ca(h) proves the claim. m

Proof of Theorem 2. We already showed at the beginning of section 6
that the spherical symmetrization of a co-area irregular function cannot be
approximated by a sequence of Steiner symmetrizations and rotations.

To prove the converse, let f be a co-area regular function in W1P(R™1)
that vanishes at infinity. We will construct a sequence of rearrangements
{fx} of f by (6.2) which converges to f* in WP. Replacing f by a slice
as in (2.4), we may assume without loss of generality that f is a bounded
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function with compact support, and that the measures of the nontrivial
level sets of f are bounded away from zero.
By Lemma 8.1 there exists a sequence of symmetrizations so that

(8.3) s%p(\Il(fk) —U(S°Rfi)) -0 (k— o)

and
fe— f*in L', | Fellyy = [[f* ]l (k= 00).

This implies that the perimeters of almost all level sets converge to the
perimeters of the level sets of f*, that is,

(8.4) klg{)lo or(h) = o*(h)

for almost all .

By assumption, all level sets of f;, satisfy B,, C Eg(h) C B,, for some
0 < r1 < r9. Fix a small number ¢ > 0. By Lemma 6.2, there exists
a constant ¢ so that for w € C. and & perpendicular to w in R™! with
|€] < ¢, the line defined by z(t) = £ + tw intersects the boundary of the
level set Ej(h) transversally in exactly two points z7(£,w) and z~ (£, w).
By Lemma 8.2,

ha
sup / /G(|ka(w+)|, |V Fe(27)]) Xa/dao f (a+) 20X /de0 £ (=) 0] ¢| <cdE AP
wec;hl fJ_w

— 0 (k— 00).
Note that the left-hand side of (8.3) depends on R only through w =
R(1,0,...,0). Integrating over w and using Lemma 8.3 with

H((s, ), 2(t, 1))
= G(IV fu(z (s, R))|, IV fi(2(t, h))[) Xc. (2 (s, b)) X, (2(t, )

we see that

L[ GUVAe(s MLV A W))dsdidh — 0
o JoE,(n)nc. J8E,(h)NC.

Set
h+48

che(h) : Ok (R) ! lim / F(\Vfil) IV fr| "t dsdn/
§20Jh-5 JE,(r)NC.

where o}, .(h) is the perimeter of the level set E(h) in C.. By Lemma 8.4,
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we have that

ha
/ / |ka| —c ‘|ka|_ dsdh — 0 (k—)oo),
b JE(h

where
c(h) := lim cge(h),
k—oo
which clearly cannot depend on €. As a pointwise limit of the ct., c is
Borel measurable and vanishes if & is in the support of the singular part of

the measure induced by the distribution function of f.
We next show that F(|V fi|) converges to c(f*) in L*. We write

[1F7 @) - e(*@)]de
< [IFQA@)) - eli(@)|de + [ [e(ile)) — elr"@D]de.

If f is co-area regular, then c(fr(z)) vanishes almost everywhere on the set
of critical points of fi by the remark after Lemma 4.2, and we can rewrite
the first term as

/‘F(|ka(m)| — c(fr(z ‘X|vfk|>0d;c

ha
:/ / [PV ful) — e(h)| |V ful " dsdh,
hy Ek(h)ﬁC,

which converges to zero by (8.5). The second term converges to zero by
Lemma 6.1.

By Lemma 3.2, the sequence |V fi| converges to some limiting function
in LP. By Theorem 3, the angular part of the gradient converges to zero
in LP. The limit of the sequence of gradients must coincide with the weak

limit V f*. O
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