
GREGARIOUS AND RECLUSIVE TRIPLES

Ed Barbeau

1. Triples, products and squares

For the triple of numbers (1, 3, 8), the product of any pair of them is one less
than a square. Similarly, the product of any two numbers in the triple (1, 2, 5) is
one more than a square. The reader may recognize the numbers in these triples as
alternate terms of the Fibonacci sequence, defined by the recursion f0 = 0, f1 = 1
and fn+1 = fn + fn−1 for each integer n. The terms with nonnegative even indices
are

0, 1, 3, 8, 21, 55, 144, 377, 987, . . . ;

we find that for each three consecutive terms (x, y, z) in this sequence xy+1, xz+1
and yz + 1 are all squares. Likewise, for each three consecutive terms (x, y, z) in
the sequence of Fibonacci numbers with positive odd indices,

1, 2, 5, 13, 34, 89, 233, 610, 1597, . . . ,

xy − 1, xz − 1 and yz − 1 are all squares. These are familiar Fibonacci properties.

Define a vector (x, y, z) of three integers to be a k−triple if xy + k = c2,
yz + k = a2 and zx + k = b2 for integers k, a, b, c. We have provided examples of
1−triples and (−1)−triples. Both of these are parts of a larger scheme. Consider
this table, whose k = 1 row is familiar.

k ↓ n→ −5 −4 −3 −2 −1 0 1 2 3 4 5
−2 54 19 9 2 3 1 6 11 33 82 219
−1 29 10 5 1 2 1 5 10 29 73 194

0 4 1 1 0 1 1 4 9 25 64 169
1 −21 −8 −3 −1 0 1 3 8 21 55 144
2 −46 −17 −7 −2 −1 1 2 7 17 46 119
3 −71 −26 −11 −3 −2 1 1 6 13 37 94
4 −96 −35 −15 −4 −3 1 0 5 9 28 69

Any three consecutive entries in the row labelled k are a k−triple. Suppose that
the nth terms in this row is given by u(k, n). You will observe that for these rows,
any three consecutive entries constitute a k− triple,

u(k,−2) = −k; u(k,−1) = −k + 1; u(k, 0) = 1;

and also that

u(k, n+ 3) = 2u(k, n+ 2) + 2u(k, n+ 1)− u(k, n).

The reader is invited to conjecture a general formula for u(k, n) and check out the
k−triples. (A good place to start is with row k = 0 and look at the value of u(k, n)
as n increases or decreases by 1.)

In a similar way, row k = −1 in the table below reproduced the (−1)−triples we
have already seen.
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k ↓ n→ −5 −4 −3 −2 −1 0 1 2 3 4 5
−4 164 61 25 8 5 1 4 5 17 40 109
−3 139 52 21 7 4 1 3 4 13 31 84
−2 114 43 17 6 3 1 2 3 9 22 59
−1 89 34 13 5 2 1 1 2 5 13 34

0 64 25 9 4 1 1 0 1 1 4 9
1 39 16 5 3 0 1 −1 0 −3 −5 −16
2 14 7 1 2 −1 1 −2 −1 −7 −14 −41
3 −11 −2 −3 1 −2 1 −3 −2 −11 −23 −66

Let v(k, n) be the nth element in the kth row. In this extract, we note that the
kth row consists of k−triples, that

v(k,−2) = −k+4; v(k,−1) = v(k, 2) = −k+1; v(k, 0) = 0; v(k, 1) = −k;

and that

v(k, n+ 3) = 2v(k, n+ 2) + 2v(k, n+ 1)− v(k, n).

Again, the reader is invited to conjecture a general formula for v(k, n) and check
out the occurrence of k−triples.

We need some definitions. Motivted by the recursion satisfied by u(k, n) and
v(k, n), we define the right associate of (x, y, z) to be the triple (y, z, w) where
w = 2(y+ z)− x, the left associate of the triple (x, y, z) to be (2(x+ y)− z, x, y)
and the central associate of (x, y, z) to be (x, 2(x+ z)− y, z).

A k−triple is gregarious if all its associates are k−triples (with the same value of
k). A sequence {un} satisfying the gregarious recursion un+3 = 2un+2+2un+1−un
is k−gregarious if each three consecutive terms constitute a k−triple. Each line
in the tables is a gregarious sequence.

In what follows, we shall secure our assertions about {u(k, n)}, {v(k, n)}, con-
sider the construction of other k− triples and find that not all of them are gregar-
ious. A k−triple whose associate are not all k−triples is said to be reclusive.

2. A general constuction of k−triples and k−quadruples.

Suppose that x, y and c are arbitrary integers. Define z = x + y + 2c. Let
k = c2−xy. Then, (x, y, z) is a k−triple, since xz+k = (x+c)2 and yz+k = (y+c)2.
Let us look at its right associate (X,Y, Z) = (y, z, w), where w = 2(y+ z)−x Then
w− (y + z) = y + z − x = 2(y + c) and yz + k = (y + c)2. So the triple (X,Y, Z) is
formed similarly to (x, y, z) with the role of c played by y + c. A similar situation
holds with the left associate. (2(x+ y)− z, x, y). Thus we can embed (x, y, z) into
a k−gregarious sequence. The sequences {u(k, n)} and {v(k, n)} are examples of
this construction (check that the value of c works for each triple). k−gregarious
sequences formed in this way are super k−gregarious.

If we permute the terms of (x, y, z) to (x, z, y), we find that y = x+ z− 2(c+ x)
and xz = [−(c+x)]2 and we can embed this triple in another sequence of k−triples.
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Any triple (x, y, z) of integers for which z − (x + y) is an even number 2c, is
k−gregarious with k = c2 − xy. So such triples are as prolific as Fibonacci’s
rabbits. This table gives some general examples:

(x, y, z) (a, b, c)
k
r2 + s2 + t2 − 2(rs+ st+ rt) (2r, 2s, 2t) (−r + s+ t, r − s+ t, r + s− t)
r2 + s2 + t2 − 2(rs+ st+ rt)− 2r (2r, 2s+ 1, 2t+ 1) (s+ t− r + 1, r − s+ t, r + s− t)

It is natural to ask whether, for any value of k, there are quadruples of numbers
for which the product of any pair plus k is a square. The construction just described
makes it quite straightforward to answer this in the affirmative. If we extend the
triple (x, y, x+ y+ 2c) to the left, we get the quadruple (x+ y−2c, x, y, x+ y+ 2c).
Since (x + y − 2c, x, y) and (x, y, x + y + 2c) are k−triples, it is necessary only to
arrange that

(x+ y − 2c)(x+ y + 2c) + k = (x+ y)2 − 4c2 + (c2 − xy) = (x2 + xy + y2)− 3c2

is equal to d2 for some integer d. In other words, we need to find numbers expressible
in each of the forms x2 + xy + y2 and 3c2 + d2.

It turns out that the forms φ(x, y) = x2+xy+y2 and ψ(c, d) = 3c2+d2 represent
the same set of numbers. When x and y have the same parity, then we can select c
and d so that x = c+ d and y = c− d to find that f(x, y) = g(c, d). This leads us
to the d2−quadruple (0, c+ d, c− d, 4c).

If x and y have different parity, then, wolog, suppose that y is even. Then
φ(x + y,−x) = φ(x, y) and the relations x + y = c + d, −x = c − d lead us to the
(3c2−2cd)−quadruple (d−c, d−c, 2c, d+3c). It may appear that these k−quadruples
may be too facile in the sense that they involve either one entry that vanishes or
two entries that are equal, both of which reduce the number of distinct products
involved. However, where there are more than one way to represent a number
either in either of the forms φ(x, y) or ψ(c, d), we can get numerous examples of
k−quadruples by using each c with each of the pairs (x, y). Some of the quadruples
will have all its entries distinct. This table gives some examples.
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φ(x, y) = ψ(c, d) (x, y) (c, d) (c, k) k−quadruple
49 (−3, 8), (7, 0) (4, 1), (0, 7) (4, 40) (−3,−3, 8, 13)

(4, 16) (−1, 7, 0, 15)
(0, 24) (5,−3, 8, 5)
(0, 0) (7, 7, 0, 7)

91 (−1, 10), (5, 6) (3, 8), (5, 4) (3,−21) (5, 5, 6, 17)
(3, 19) (3,−1, 10, 15)
(5,−5) (1, 5, 6, 21)
(5, 35) (−1,−1, 10, 19)

133 (−1, 12), (9, 4) (2, 11), (6, 5) (2,−32) (9, 9, 4, 17)
(2, 16) (9,−1, 12, 15)
(6, 0) (1, 9, 4, 25)
(6, 48) (−1,−1, 12, 23)

When k = 1, there are various quadruples:

(r − 1, r + 1, 4r, 4r(4r2 − 1));

(1, r2 − 1, r(r + 2), 4r(r3 + 2r2 − 1));

(r, s2−1+(r−1)(s−1)2, s(rs+2), 4r3s4+8r2(2−r)s3+4r(r−1)(r−5)s2+4(2r−1)(r−2)s+4(r−1));

(r, 4(r − 1), r − 2, 4(2r − 3)(2r − 1)(r − 1);

(r, s, r + s+ 2c, 2c(r + c)(s+ c)).

3. The tables involving u(k, n) and v(k, n).

Recall that

u(k,−2) = −k = f20 − kf2−2

u(k,−1) = 1− k = f21 − kf2−1

u(k, 0) = 1 = f22 − kf20 .

The k−triple (u(k,−2), u(k,−1), u(k, 0)) is gregarious with c = −k. It will be
shown by induction that, in general,

u(k, n) = f2n+2 − kf2n.

(The particular case of k = 1 is already well known: f2(n+1) = u(1, n) = f2n+2 −
f2n.) We have already established the base equations, so all that is necessary is to
establish that {f2n} is a gregarious sequence.

As for {v(k, n)}, it can be shown by induction that

v(k, n) = f2n−1 − kf2n,

a fact which is easily checked when n = −1, 0, 1. The rest of the argument hinges
on checking that {f2n} is a gregarious sequence. In particular,

f2n−1 = v(−1, n) = f2n−1 + f2n.
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A number of familiar properties of the Fibonacci numbers are relevant:

(1) f2n+2 = f2n−2 + f2n + 2f2n−1;

(2) f2n−2f2n + 1 = f22n−1;

(3) f2n+3 = f2n−1 + f2n+1 + 2f2n;

(4) f2n−1f2n+1 − 1 = f22n.

(5) fn+1fn−1 − f2n = (−1)n;

(6) fn+2fn−2 − f2n = (−1)n−1;

(7) fn+2fn−1 − fn+1fn = (−1)n;

(8) f2n+1f
2
n−1 + f4n = 2fn+1f

2
nfn−1 + 1;

(9) f2n+2f
2
n−2 + f4n = 2fn+2f

2
nfn−2 + 1;

(10) f2n+2f
2
n−1 + f2n+1f

2
n = 2fn+2fn+1fnfn−1 + 1.

Equations (8), (9), (10) result from squaring (5), (6), (7) and rearranging the
terms.

In addition, alternate squares of the Fibonacci numbers satisfy the recursion

f2n+3 = 2(f2n+2 + f2n+1)− f2n,

whose characteristic polynomial is t3 − 2t2 − 2t+ 1 = (t+ 1)(t2 − 3t+ 1).

Two other Fibonacci results play a role in analyzing the sequences {u(k, n)} and
{v(k, n)}.

f2n−1 − 3f2n + f2n+1 = 2(−1)n;

f2n+3 = 2(f2n+2 + f2n+1)− f2n.
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To see the first of these, note that

f2n−1 − 3f2n + f2n+1 = fn−2fn + (−1)n − 3f2n + fn+2fn + (−1)n

= fn[(fn−2 − fn)− fn − (−fn + fn+2)] + 2(−1)n

= fn[−fn+1 − fn + fn+1] + 2(−1)n = 2(−1)n.

For the second, note that

f2n+3 − 2(f2n+2 + f2n+1) + f2n = (f2n+3 − 3f2n+2 + f2n+1) + (f2n+2 − 3f2n+1 + f2n) = 0.

Therefore,

u(k, n− 1)− 3u(k, n) + u(k, n+ 1) = 2(−1)n − 2k(−1)n = −2(k − 1)(−1)n−1;

v(k, n− 1)− 3v(k, n) + v(k, n− 1) = 2(−1)n−1 − 2k(−1)n = 2(k + 1)(−1)n−1;

u(k, n+ 3) = 2(u(k, n+ 2) + u(k, n+ 1))− u(k, n);

v(k, n+ 3) = 2(v(k, n+ 2) + v(k, n+ 1))− v(k, n).

To verify that {u(k, n)} and {v(k, n)} are k−sequences, we have that

(f2n+1 − kf2n−1)(f2n+2 − kf2n) + k = f2n+2f
2
n+1 − k[f2n+1f

2
n + f2n+2f

2
n−1 − 1] + k2f2nf

2
n−1

= f2n+2f
2
n+1 − 2kfn+2fn+1fnfn−1 + k2f2nf

2
n−1 = (fn+2fn+1 − kfn−1fn)2;

and

(f2n+2 − kf2n)(f2n − kf2n−2) + k = f2n+2f
2
n − k[f2n+2f

2
n−2 + f4n + 1] + k2f2nf

2
n−2

= f2n+2f
2
n − 2k[f2n+2f

4
nf

2
n−2] + k2f2nf

2
n−2 = f2n(fn+2 − fn−2)2.

It is interesting to note that

f2n+2 − 3f2n + f2n−2 = 0

and

f2n+3 − 3f2n+1 + f2n−1 = 0.

4. Reclusive k−triples and their families

Not every k−triple generates a succession of k−triples when embeded in a se-
quence satisfying the congenial recurrence. For example, when x = y, there are
triples for which (x, x, z) is a k−triple, but its right associate (x, z, x + 2z) is not.
With xy + k = c2, zx+ k = b2, yz + k = a2, we have the examples:

k (x, y, z) (a, b, c)
4r4 + 8r3 − 4r + 1 (2r + 1, 2r + 1, 2(2r + 1)) (2r2 + 2r + 1, 2r2 + 2r + 1, 2r2 + 2r)
r4 − 6r2s2 + s4 (2rs, 2rs, 4rs) (r2 + s2, r2 + s2, r2 − s2)
−(12r3 − 16r2 − 3r) (3r, 4r2 − 1, 4r2 + 3r − 1) (4r2 + 1, 5r, 4r)

The last one is an example of using a process involving Pythagorean triples.
Suppose that z = x + y, x2 + k = c2. Then a2 = yz + k = x2 + xy + k = x2 + c2

and b2 = xz + k = y2 + c2. Then (x, c, a) and (y, c, b) are both Pythagorean triples
sharing the value of a leg. These triples allow us to isolate the values of a, b, c, x, y.
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For example, three three Pythagorean triples (5, 12, 13), (9, 12, 15) and (35, 12, 37)
share the term c = 12. Using the three pairs of them, arrive at the reclusive
k−triples (5, 9, 14), (5, 35, 40) and (9, 35, 44) with values of k respectively equal to
99, −31 and −171. The associate of (5, 35, 40) to the right is (35, 40, 145) and we
note that 35× 145− 31 = 712 + 3, a near miss. This is not the only occurrence of
this.

The k−triple (2r+ 1, r2(r+ 1)2− 1, r2(r+ 1)2 + 2r) with k = −(2r5 + r4− 4r3−
3r2 − 2r − 1) has right associate

(r4 + 2r3 + r2 − 1, r2 + 2r3 + r2 + 2r, 4r4 + 8r3 + 4r2 + 2r − 3).

We find that

(r4 + 2r3 + r2 − 1)(4r4 + 8r3 + 4r3 + 2r − 3)− (2r5 + r4 − 4r3 − 3r2 − 2r − 1)

= (4r8 + 16r7 + 24r6 + 18r5 + r4 − 12r3 − 7r2 − 2r + 3)

+ (−2r5 − r4 + 4r3 + 3r2 + 2r + 1)

= 4r8 + 16r7 + 24r6 + 16r5 − 8r3 − 4r2 + 1 + 3

= (2r4 + 4r3 + 2r2 − 1)2 + 3 = [2r2(r + 1)2 − 1]2 + 3.

Once we start with a k−triple, (x, y, z), we can generate an infinite family of
k−triples with the same values of x and y. We will suppose that xy is not a square.
These new k−triples will be a isolated set of reclusive triples. Suppose that we
know that xy + k = c2. Then, we wish to find a value z for which yz + k = a2 and
xz + k = b2. Then we want to have

xa2 − yb2 = (x− y)k.

If this has one solution (a, b), then it has infinitely many obtained by combining it
with solutions (u, v) of u2− (xy)v2 = 1. Note that, if (A,B) = (au+ybv, bu+xav),
then

xA2 − yB2 = (xa2u2 + 2xyuvab+ xy2b2v2)− (yb2u2 + 2xyuvab+ yx2a2v2)

= xa2(u2 − xyv2)− yb2(u2 − xyv2) = xa2 − yb2 = (x− y)k.

We can use (x, y) = (2, 4) as a case study. In this case, we start with a congenial
triple and use Pell’s equation to derive reclusive triples. Solution of the equation
a2 − 2b2 = ±1:

(a, b) = (1, 0), (1, 1), (3, 2), (7, 5), (17, 12), (41, 29), (99, 70), (239, 169), (577, 408), (1393, 985).

If (a, b) = (an, bn) is a solution, then the next solution is

(an+1, bn+1) = (3an + 4bn, 2an + 3bn).

(We could also use an+1 = 6an − an−1 and bn+1 = 6bn − bn−1.) We start with
(x, y, z) = (2, 4, 2c − 6) where k = c2 − 8. In the table, we indicate values of k for
which the triple is congenial along with the squares involved.
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k c (x, y, z) (a, b, c) z/(a+ b) Congenial k (a, b, c)
1 −3 (2, 4, 0) (1,−1,−3) 1 (1,−1,−3)

(2, 4, 12)) (7, 5,−3) 1 1 (7, 5, 3)
(2, 4, 420) (41, 29,−3) 6 42841 211, 209, 207)
(2, 4, 14280) (239, 169,−3) 35 50936761 (7141, 7139, 7137)
(2, 4, 485112) (1393, 985, 3) 204

−4 −2 (2, 4, 2) (2, 0,−2) 1 −4 (2, 0,−2)
(2, 4, 10) (6, 4,−2) 1 −4 (6, 4, 2)
(2, 4, 290) (34, 24,−2) 5

−7 −1 (2, 4, 4) (3, 1,−1) 1 −7 (3, 1,−1)
(2, 4, 8) (5, 3,−1) 1 −7 (5, 3, 1)
(2, 4, 44) (13, 9− 1) 2 353 (23, 21, 19)
(2, 4, 184) (27, 19,−1) 4 7913 (93, 91, 89)
(2, 4, 1408) (73, 53,−1) 11 491391 (705, 703, 701)

−8 0 (2, 4, 6) (4, 2, 0) 1 −8 (4, 2, 0)
(2, 4, 102) (20, 14, 0) 3 2296 (52, 50, 48)
(2, 4, 3366) (116, 82, 0) 17 2822392 (1684, 1682, 1680)

The set of (−1)−triples for which (x, y) = (1, 5) is noteworthy. While the table
can be generated from the solutions of a2 − 5b2 = 4, there is a convenient formula
for its entries. Only the first triple on the table is congenial.

(x, y, z) (a, b, c) sequence extension
(1, 5, f22n + 1) (f2n−1 + t2n+1), fn, 2)

(1, 5, 10) (7, 3, 2) (. . . , 1, 2, 1, 5, 10, 29, 73, . . . )
(1, 5, 65) (18, 8, 2) (. . . ,−53, 1, 5, 65, 139, 403, . . . )

(1, 5, 442) (47, 21, 2) (. . . ,−430, 1, 5, 442, 893, 2665, . . . )
(1, 5, 3026) (123, 55, 2)

For yz − 1, we have the computation

5(f22n + 1)− 1− (f2n−1 + f2n+1)2 = 5f2n−1f2n+1 − 1− (f2n−1 + f2n+1)2

= f2n−1(f2n+1 − f2n−1) + (f2n−1 − f − 2n+ 1)f2n+1 + f2n−1f2n+1 − 1

= −f2n(f2n+1 − f2n−1) + f2n−1f2n+1 − 1 = −f2n2 + f2n−1f2n+1 − 1 = 0.

An alternative approach is through Pell’s equation. The equations z − 1 = b2

and 5z − 1 = a2 leads to a2 − 5b2 = 4 which has fundamental solutions (a, b) =
(2, 0), (3, 1), (7, 3). These lead to the foregoing possibilities.

5. Constructing triples from the related squares

We can construct k−triples by starting with the squares involved. Let a, b, c be
three arbitrary integers; we will use factorizations of the differences of their squares
to construct k−triple. For example, if b2 − c2 = x(z − y), we can select different
possibilities for the factors x and z − y.
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Thus, z − y will be among the divisors of b2 − c2, y − x among the divisors of
a2 − b2, and z − x among the factors of a2 − c2. However, the choice of divisors
from the three differences of squares will be constrained by the fact that

z − x = (z − y) + (yx).

From these choices for z−x, z−y, y−x, we can get x, y, z from the coefactors of the
square differences and check that the values are consistent with their differences.
When this is applied to (a, b, c) = (11, 7, 3), there are a great many choices to try,
but the only ones that work are

(z − x, z − y, y − x) = (8, 4, 4), (14, 4, 10).

For example, when (a, b, c) = (11, 7, 3), (z − x, z − y, y − x) = (14, 4, 10),

14y = (z − x)y = 112 − 32 = 112;

4z = (y − x)z = 112 − 72 = 72;

10x = (z − y)x = 72 − 32 = 40;

which lead to (x, y, z) = (4, 8, 18), which is consistent with the values of the differ-
ences. Indeed, (4, 8, 18) is a −23−triple, with 112 = 8× 18− 23, 72 = 4× 18− 23,
32 = 4 × 8 − 23. We observe that when we factor the difference of squares using
the formula, we get 112 = 8× 14, 72 = 4× 8, 40 = 4× 10. This suggests that when
we search for k−triples, we begin with the difference of squares factorizations.

Suppose first that a, b, c are all distinct.

1. Let x = b−c, y = a−c, z = a+b. Then a−b = y−x, a+c = (a+b)−(b−c) =
z − x, b + c = (a + b) − (a − c) = z − y. Then a2 − b2 = (y − x)z = yz − xz,
b2 − c2 = x(z − y) = xz − xy, a2 − c2 = y(z − x) = yz − yx.

In fact,

xy = c2 − (a+ b)c+ ab;

xz = b2 − (a+ b)c+ ab;

yz = a2 − (a+ b)c+ ab;

so that (x, y, z) is a k−triple with k = (a+ b)c− ab.

We can extend to get a sequence of k−triples. Let

w = 2(y + z)− x = 2(2a+ b− c)− (b− c) = 4a+ (b− c).

Then

yw + k = (a− c)(4a+ b− c) + (a+ b)c− ab = (2a− c)2

and

zw + k = (a+ b)(4a+ b− c) + (a+ b)c− ab = (2a+ b)2.



10

The triple (y, z, w) corresponds to the squares ((2a+ b)2, (2a− c)2, c2). Analogous
to the relationship between (x, y, z) and (a, b, c), we find that

y = (2a− c)− a;

z = (2a+ b)− a;

w = (2a+ b) + (2a− c).

2. Let x = a + b, y = a + c, z = a + b, so that y − x = a − b, z − x = a − c,
z − y = b− c. Then, when k = −(ab+ bc+ ca),

xy + k = c2; yz + k = a2; zx+ k = b2.

Let

w = 2(y + z)− x = 2(2a+ b+ c)− (b+ c) = 4a+ b+ c.

Then

yw + k = (2a+ c)2; zw + k = (2a+ b)2.

If we specialize to (a, b, c) = (r − 1, r, r + 1), then (x, y, z) = (2r − 1, 2r, 2r + 1)
and k = −(3r2 − 1).

3. Let x = b − c, y = a − c, z = a − b. Then y − x = a + b, z − x = a + c,
z − y = b + c. A necessary condition for this to hold is that b = 0. In this case,
we get the ac−triple (−c, a− c, a). This can be extended to the sequence yielding
sucessive ac−triples:

. . . , a− 4c,−c, a− c, 4a− c, . . .

4. Let x = b − c, y = a + c, z = a + b. Then z − y = b + c, z − x = a − c,
y − x = a− b. Then

a− c = z − x = (z − y) + (y − x) = (b+ c) + (a− b) = a+ c,

so that c = 0. In this case, we get the sequence yielding −ab−triples.

. . . , a+ 4b, a+ b, b, a, a+ b, 4a+ b, 9a+ 4b, . . .

Now we consider the case that b2 = c2, so that xy + k = xz + k = b2 and
yz + k = a2, In this case x(z − y) = 0, so that either x = 0 or y = z.

5. When x = 0, we obtain the 3−triple (0, a−b, a+b) with k = b2. The extended
sequence is:

. . . , a− 5b, a− 3b, 0, a− b, a+ b, 4a, 9a+ 3b, . . . .

However, only (0, a− b, a+ b) and (a− b, a+ b, 4a) are b2−triples.

6. When y = z, we get the equations xy + k = b2 and y2 + k = a2. Then
(x− y)y = b2 − a2. If y = b+ a, we get the −(b2 + 2ab)−triple (2b, b+ a, b+ a).

When y = b− a, we get the −(b2 − 2b)−triple (2b, b− a, b− a).
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We consider the particular case where (a, b, c) = (4, 5, 5). By the foregoing cases,
we get the (−65)−sequence

. . . , 69, 29, 10, 9, 9, 26, 61, . . .

and the 15−sequence

. . . ,−35,−11,−6, 1, 1, 10, 21, 61, . . .

However, the factorization 3×3 of b2−a2 = 16, which is not of the type considered
so far, gives the 7−triple, (6, 3, 3) which is not embedded in a sequence of triples.
However, it is also a −9−triple which can be embedded in a sequence of triples.
This is because it is a multiple of the −1−triple (2, 1, 1).

6. Open questions

1. For each nonzero integer k, what is the maximum number of entries in a
nontrivial set S of integers for which xy + k is a square for pair (x, y) of distince
elements of S? (By nontrivial, we insist that the numbers be distinct and nonzero.)
In particular, is it always possible to find a set of 4 elements with this property?
Are there any values of k for which the answer is 3?

2. For each integer k we form a graph whose vertices are equivalent classes of
k−triples. Two k− triples are equivalent if the terms of one are the negative of the
terms of the other, the terms of one are a permutation of those of the other, or a
composite of these conditions. The vertices are the equivalent classes of k−triples
and two vertices are connected by an edge if and only if a representative triple of
one is an associate of a representative triple of the other. Is the graph formed by
the equivalence classes of congenial k−triples connected?

3. Can a triples (x, y, z) be a congenial k−triple for more than one integer k.

4. Are there any k−triples (x, y, z) for which none of x, y, z is equal to 0 or 1
and xyz + k is also a square?

5. Let k be an integer. Suppose that for some triple, the product (xy + k)(yz +
k)(zx + k) is square. Under what circumstances does this imply that each of the
three factors is square?

This has been investigated for k = 1 in the paper

Kiran S. Kedlaya, When is (xy+ 1)(yz+ 1)(zx+ 1) a square? Math. Mag. 71:1
(February, 1998), 61-63 .

6. Does every congenial k−sequence have the property that, for every consecutive
triple (x, y, z), z = x+ y + 2c where xy + k = c2?

7. What are the possible values of the triple (k,m, d) for which there is a
k−sequence with each term congruent to d modulo m?
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For example, if m is a common divisor of r and s, then (s2,m, 0) is such a triple
exemplified by the sequence

. . . , r − s, 0, r + s, 4r + 8s, 9r + 21s, 25r + 55s, . . . .

The modular pair (2, 0) is exemplified by

k = 1 : . . . ,−2, 0, 0, 2, 4, 12, 30, 44, . . . ;

k = 1 : . . . ,−28, 8, 6, 0, 4, 2, 12, 24, 70, . . . ;

k = 1 : . . . , 4, 0, 2, 0, 6, 20, 48, . . . ;

k = 4 : . . . ,−6, 0,−2, 2, 0, 6, 10, 32, 78, . . . ;

k = 5 : . . . ,−2,−2, 2, 2, 10, 22, 62, 158, . . . .

Are there any examples for which d 6= 0?

8. Which k−triples are arithmetic progressions? geometric progressions? har-
monic progressions?

9. Characterize triples (x, y, z) that are not k−triples for any value of k?

Further References

For the cases k = ±1, a few results are given on pages 153-155, 157-159 of the
book

Edward J. Barbeau, Power play. The Mathematical Association of America,
1997 ISBN 0-88385-523-2

In Mathematics and Informatics Quarterly 6 (1996), 21-26, S.T. Thakar gives one
of our parametric examples of a 1−quadruple, and also for general k, the embedding
of a k−triples into a congenial sequence.


