OLYMON

Produced by the Canadian Mathematical Society and the Department of Mathematics of the University of Toronto.

Issue 8:2

March, 2007
Please send your solution to
Prof. E.J. Barbeau
Department of Mathematics
University of Toronto
Bahen Centre, Rom 6290
40 St. George St.
Toronto, ON M5S 2E4
no later than April 30, 2007. It is important that your complete mailing address and your email address appear on the front page. If you do not write your family name last, please underline it.
486. Determine all quintuplets (a, b, c, d, u) of nonzero integers for which

$$
\frac{a}{b}=\frac{c}{d}=\frac{a b+u}{c d+u}
$$

487. $A B C$ is an isosceles triangle with $\angle A=100^{\circ}$ and $A B=A C$. The bisector of angle B meets $A C$ in D. Show that $B D+A D=B C$.
488. A host is expecting a number of children, which is either 7 or 11 . She has 77 marbles as gifts, and distributes them into n bags in such a way that whether 7 or 11 children come, each will receive a number of bags so that all 77 marbles will be shared equally among the children. What is the minimum value of n ?
489. Suppose n is a positive integer not less than 2 and that $x_{1} \geq x_{2} \geq x_{3} \geq \cdots \geq x_{n} \geq 0$,

$$
\sum_{i=1}^{n} x_{i} \leq 400 \quad \text { and } \quad \sum_{i=1}^{n} x_{i}^{2} \geq 10^{4}
$$

Prove that $\sqrt{x_{1}}+\sqrt{x_{2}} \geq 10$. is it possible to have equality throughout? [Bonus: Formulate and prove a generalization.]
490. (a) Let a, b, c be real numbers. Prove that

$$
\min \left[(a-b)^{2},(b-c)^{2},(c-a)^{2}\right] \leq \frac{1}{2}\left[a^{2}+b^{2}+c^{2}\right]
$$

(b) Does there exist a number k for which

$$
\min \left[(a-b)^{2},(a-c)^{2},(a-d)^{2},(b-c)^{2},(b-d)^{2},(c-d)^{2}\right] \leq k\left[a^{2}+b^{2}+c^{2}+d^{2}\right]
$$

for any real numbers a, b, c, d ? If so, determine the smallest such k.
[Bonus: Determine if there is a generalization.]
491. Given that x and y are positive real numbers for which $x+y=1$ and that m and n are positive integers exceeding 1, prove that

$$
\left(1-x^{m}\right)^{n}+\left(1-y^{n}\right)^{m}>1
$$

492. The faces of a tetrahedron are formed by four congruent triangles. if α is the angle between a pair of opposite edges of the tetrahedron, show that

$$
\cos \alpha=\frac{\sin (B-C)}{\sin (B+C)}
$$

where B and C are the angles adjacent to one of these edges in a face of the tetrahedron.

Solutions to Problems 465-485.

465. For what positive real numbers a is

$$
\sqrt[3]{2+\sqrt{a}}+\sqrt[3]{2-\sqrt{a}}
$$

an integer?
Solution 1. Let $x=\sqrt[3]{2+\sqrt{a}}, y=\sqrt[3]{2-\sqrt{a}}$ and $z=x+y$. Then

$$
z^{3}=(x+y)^{3}=x^{3}+y^{3}+3(4-a)^{1 / 3} z=4+3(4-a)^{1 / 3} z
$$

Hence $27(4-a) z^{3}=\left(z^{3}-4\right)^{3}$, whence

$$
a=4-\frac{\left(z^{3}-4\right)^{3}}{27 z^{3}}=\frac{108 z^{3}-\left(z^{3}-4\right)^{3}}{27 z^{3}}
$$

Since $a \geq 0, z$ must be either (1) a positive integer for which $108 z^{3} \geq\left(z^{3}-4\right)^{3}$, or (2) a negative integer for which $108 z^{3} \leq\left(z^{3}-4\right)^{3}$.

Condition (1) forces $108 \geq\left(z^{2}-(4 / z)\right)^{3} \geq\left(z^{2}-4\right)^{3}$, so that $z=1,2$. Condition (2) forces $108 \geq$ $\left(z^{2}-(4 / z)\right)^{3} \geq z^{6}$, which is satisfied by no negative integer value of z. Hence, we must have that $(z, a)=$ $(1,5),(2,100 / 27)$. Since $z=x+y$ is equivalent to $z^{3}=4+3(4-a)^{1 / 3} z$, it is straightforward to check that both these answers are correct. Hence $a=5$ or $a=100 / 27$.

Solution 2. [Yifan Wang] With x and y defined as in the first solution, note that $x>y$ and that $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$. Since $x^{2}+y^{2}>(x+y)^{2} / 2$ and $-x y>-(x+y)^{2} / 4$, we have that $4>(x+y)^{3} / 4$, whence $x+y \leq 2$. Since $x^{3}>-y^{3}, x>-y$, so that $x+y>0$. Hence $x+y=1$ or $x+y=2$.

When $x+y=1, x^{2}-x y+y^{2}=4$ and so $x y=-1$, and $x=\frac{1}{2}(1+\sqrt{5}), y=\frac{1}{2}(1-\sqrt{5})$. Therefore $4-a=x^{3} y^{3}=-1$ so that $a=5$.

When $x+y=2$, then $x^{2}-x y+y^{2}=2$, so that $x y=2 / 3$. Therefore $x=\frac{1}{3}(3+\sqrt{3}), y=\frac{1}{3}(3-\sqrt{3})$ and $4-a=8 / 27$. Thus, $a=100 / 27$. These solutions check out.

Solution 3. [A. Tavakoli] Denote the left side of the equation by $f(a)$. When $a \geq 4$,

$$
0 \leq f(a)=(\sqrt{a}+2)^{1 / 3}-(\sqrt{a}-2)^{1 / 3}=\frac{4}{(\sqrt{a}+2)^{2 / 3}+(a-4)^{1 / 3}+(\sqrt{a}-2)^{2 / 3}} \leq 4^{1 / 3}<3
$$

Let $0 \leq a \leq 4$; again $f(a)>0$. Observe that

$$
\left(\frac{1}{2}(u+v)\right)^{\frac{1}{3}} \geq \frac{1}{2} u^{\frac{1}{3}}+\frac{1}{2} v^{\frac{1}{3}}
$$

for all nonnegative values of u and v. (This can be seen by using the concavity of the function $t^{1 / 3}$, or from the power-mean inequality $(1 / 2)(s+t) \leq\left[(1 / 2)\left(s^{3}+t^{3}\right)\right]^{1 / 3}$.) Setting $u=\sqrt[3]{2+\sqrt{a}}$ and $v=\sqrt[3]{2-\sqrt{a}}$, we find that $3>2 \times 2^{1 / 3} \geq f(a)>0$ with equality if and only if $a=0$. Hence the only possible integer values of $f(a)$ are 0 and 1 .

Let $x=\sqrt[3]{2-\sqrt{a}}$, so that $2+\sqrt{a}=4-x^{3}$. Then

$$
\begin{aligned}
f(a)=1 & \Longleftrightarrow x+\left(4-x^{3}\right)^{1 / 3}=1 \\
& \Longleftrightarrow 4-x^{3}=1-3 x+3 x^{2}-x^{3} \\
& \Longleftrightarrow x^{2}-x-1=0 \Longleftrightarrow x=(1 \pm \sqrt{5}) / 2 \\
& \Longleftrightarrow x^{3}=2 \pm \sqrt{5}
\end{aligned}
$$

The larger root of the quadratic leads to $x^{3}>2$ and so is extraneous. Hence $x^{3}=2-\sqrt{5}$, and so $\sqrt{a}=\sqrt{5}$, $a=5$.

$$
\begin{aligned}
f(a)=2 & \Longleftrightarrow x+\left(4-x^{3}\right)^{1 / 3}=2 \\
& \Longleftrightarrow 4-x^{3}=(2-x)^{3}=8-12 x+6 x^{2}-x^{3} \\
& \Longleftrightarrow 3 x^{2}-6 x+2=0 \Longleftrightarrow x=\frac{3 \pm \sqrt{3}}{3} \ldots
\end{aligned}
$$

Now,

$$
\left(\frac{3 \pm \sqrt{3}}{3}\right)^{3}=2 \pm \frac{10 \sqrt{3}}{9}
$$

The larger value of x leads to $x^{3}>2$, and so is inadmissible. The smaller value of x leads to $x^{3}=2-(10 \sqrt{3} / 9)$ and $\sqrt{a}=(10 \sqrt{3} / 9), a=100 / 27$. Both values of a check out.
466. For a positive integer m, let \bar{m} denote the sum of the digits of m. Find all pairs of positive integers (m, n) with $m<n$ for which $(\bar{m})^{2}=n$ and $(\bar{n})^{2}=m$.

Solution. Let $m=m_{k} \cdots m_{1} m_{0}$ where $0 \leq m_{i} \leq 9$ are the digits of m. Then

$$
10^{k} \leq m<n=\left(m_{k}+\cdots+m_{0}\right)^{2} \leq[(k+1) 10]^{2}
$$

whence $10^{k-2} \leq(k+1)^{2}$ and $0 \leq k \leq 3$.
Hence $m<n=\left(m_{3}+m_{2}+m_{1}+m_{0}\right)^{2} \leq(4 \times 9)^{2}=36^{2}$. Since m and n are both perfect squares, we need only consider $m=r^{2}$, where $1 \leq r \leq 36$.

In the case that $k=3, \bar{m}<1+9+9+9=28$. Since $28^{2}<1000<m<n$, there are no examples. In the case that $k=2, \bar{m}<6+9+9=24$ and so $n^{2} \leq 24^{2}$. The only possibility is $(m, n)=(169,256)$. There are no possibilities when $k=0$ or $k=1$.

Hence, the only number pair is $(m, n)=(169,256)$.
Comment. This is problem 621 from The College Mathematics Journal.
467. For which positive integers n does there exist a set of n distinct positive integers such that
(a) each member of the set divides the sum of all members of the set, and
(b) none of its proper subsets with two or more elements satisfies the condition in (a)?

Solution. When $n=1$, condition (b) is satisfied vacuously, and any singleton will do. When $n=2$, such a set cannot be found. If a and b are any two positive integers, then condition (b) entails that both a and b divide $a+b$, and so must divide each other. This cannot happen when a and b are distinct.

When $n \geq 3$, a set of the required type can be found. For example, let

$$
S_{n}=\left\{1,2,2 \times 3,2 \times 3^{2}, \cdots 2 \times 3^{n-3}, 3^{n-2}\right.
$$

The sum of the elements in S_{n} is $2 \times 3^{n-2}$, which is divisible by each member of S_{n}.
Consider any proper subset R of S_{n} with at least three numbers. If 3^{n-2} belongs to R, then the sum of the elements of R must be strictly between 3^{n-2} and $2 \times 3^{n-2}$, and so not divisible by 3^{n-2}. If R does not contain 3^{n-2}, then its largest entry has the form 2×3^{k} with $1 \leq k \leq n-3$. Then the sum of R is greater than 2×3^{k} and does not exceed $1+2\left(1+3+\cdots+3^{k}\right)=3^{k+1}<2\left(2 \times 3^{k}\right)$. Hence this sum is not divisible by 2×3^{k}. As we have seen, no doubleton satisfies the condition. Hence (b) is satisfied for all subsets of S_{n}.

Comment. This is problem 1504 in the October, 1996 issue of Mathematics Magazine.
468. Let a and b be positive real numbers satisfying $a+b \geq(a-b)^{2}$. Prove that

$$
x^{a}(1-x)^{b}+x^{b}(1-x)^{a} \leq \frac{1}{2^{a+b-1}}
$$

for $0 \leq x \leq 1$, with equality if and only if $x=\frac{1}{2}$.
Comment. Denote the left side by $f(x)$. When $a=b, f(x)=2 x^{a}(1-x)^{a}$, which is maximized when $x=1 / 2$, its maximum value being 2×4^{-a}. In the general case, the solution can be obtained by calculus. Since $f(0)=f(1)=0$ and the function possesses a derivative everywhere, the maximum occurs when $f^{\prime}(x)=0$ and $0<x<1$. Wolog, assume that $a<b$. We have that

$$
f^{\prime}(x)=x^{a-1}(1-x)^{a-1}\left[(a-(a+b) x)(1-x)^{b-a}+(b-(a+b) x) x^{b-a}\right] .
$$

This solution can be found in Mathematics Magazine 70:4 (October, 1997), 301-302 (Problem 1505), and is fairly technical. It would be nice to have a more transparent argument. Is there a solution that avoids calculus, at least for rational a and b ?

A second solution, employs the substitution $2 x=1-y$ to get the equivalent inequality

$$
(1-y)^{a}(1+y)^{b}+(1-y)^{b}(1+y)^{a} \leq 2
$$

for $|y| \leq 1$. Wolog, we can let $a=b+c$ with $c \geq 0$. Then the condition becomes $2 b \geq c^{2}-c$. Then the inequality is equivalent to

$$
\left(1-y^{2}\right)^{b}\left[(1-y)^{c}+(1+y)^{c}\right] \leq 2
$$

for $|y| \leq 1$.
Let $0 \leq c \leq 1$. Then, for $t>0$, the function t^{c} is concave, so that, for $u, v>0$,

$$
\left(\frac{u+v}{2}\right)^{c} \geq \frac{u^{c}+v^{c}}{2}
$$

Setting $(u, v)=(1-y, 1+y)$, we find that $(1-y)^{c}+(1+y)^{c} \leq 2$ for $|y| \leq 1$. Hence the inequality holds, with equality occurring when $y=0(x=1 / 2)$.

When $c>1$, I do not have a clean solution. First, it suffices to consider the inequality when b is replaced by $\frac{1}{2}\left(c^{2}-c\right)$. Thus, we need to establish that

$$
\begin{equation*}
\left(1-y^{2}\right)^{(1 / 2)\left(c^{2}-c\right)}\left[(1-y)^{c}+(1-y)^{c}\right] \leq 2 \tag{*}
\end{equation*}
$$

for $|y| \leq 1$. The derivative of the natural logarithm of the left side is a positive multiple of

$$
g(y)=(1+y)^{c}(1-c y)-(1-y)^{c}(1+c y)
$$

If this can be shown to be nonpositive, then the result will follow. An equivalent inequality is

$$
\left(1-\frac{2 y}{1+y}\right)^{2}=\left(\frac{1-y}{1+y}\right)^{c} \geq\left(\frac{1-c y}{1+c y}\right)=\left(1-\frac{2 c y}{1+c y}\right)
$$

for $c>1$ and $|y| \leq 1$.
469. Solve for t in terms of a, b in the equation

$$
\sqrt{\frac{t^{3}+a^{3}}{t+a}}+\sqrt{\frac{t^{3}+b^{3}}{t+b}}=\sqrt{\frac{a^{3}-b^{3}}{a-b}}
$$

where $0<a<b$.
Solution 1. The equation is equivalent to

$$
\sqrt{t^{2}-a t+a^{2}}+\sqrt{t^{2}-b t+b^{2}}=\sqrt{a^{2}+a b+b^{2}}
$$

Square both sides of the equation, collect the nonradical terms on one side and the radical on the other and square again. Once the polynomials are expanded and like terms collected, we obtain the equation

$$
0=t^{2}(a+b)^{2}-2 a b(a+b) t+a^{2} b^{2}=[t(a+b)-a b]^{2}
$$

whence $t=a b /(a+b)$. This can be checked by substituting it into the equation.
Solution 2. [Y. Wang] As in solution 1, we can find an equivalent equation, which can then be manipulated to

$$
\sqrt{(t-(a / 2))^{2}+(\sqrt{3} a / 2)^{2}}+\sqrt{(t-(b / 2))^{2}+(-\sqrt{3} b / 2)^{2}}=\sqrt{(a / 2-b / 2)^{2}+(\sqrt{3} a / 2+\sqrt{3} b / 2)}
$$

If we consider the points $A \sim(a / 2, \sqrt{3} a / 2), B \sim(b / 2,-\sqrt{3} b / 2)$ and $T \sim(t, 0)$, then we can interpret this equation as stating that $A T+B T=A B$. By the triangle inequality, we see that T must lie on $A B$, so that the slopes of $A T$ and $B T$ are equal. Thus

$$
\frac{\sqrt{3} a}{a-2 t}=\frac{\sqrt{3} b}{2 t-b}
$$

whence $t=a b /(a+b)$.
470. Let $A B C, A C P$ and $B C Q$ be nonoverlapping triangles in the plane with angles $C A P$ and $C B Q$ right. Let M be the foot of the perpendicular from C to $A B$. Prove that lines $A Q, B P$ and $C M$ are concurrent if and only if $\angle B C Q=\angle A C P$.

Solution 1. [A. Tavakoli] Let $B P$ and $A Q$ intersect at K. Let $\angle B C Q=\alpha, \angle A C P=\beta$ and $\angle B C A=\gamma$. By the trigonometric form of Ceva's theorem, $C M, A P$ and $B Q$ are concurrent if and only if

$$
\begin{equation*}
\frac{\sin \angle B C M}{\sin \angle A C M} \cdot \frac{\sin \angle K A C}{\sin \angle K A B} \cdot \frac{\sin \angle K B A}{\sin \angle K B C}=1 \tag{1}
\end{equation*}
$$

This holds whether K lies inside or outside of the triangle.
We have that $\sin \angle B C M=\cos \angle C B A, \sin \angle A C M=\cos \angle C A B$, and, by the Law of Sines applied to triangles $A C Q$ and $A B Q$,

$$
\sin \angle K A C=\sin \angle Q A C=(\sin \angle A C Q)(|Q C|) /(|A Q|)
$$

and

$$
\sin \angle K A B=\sin \angle Q A B=(\sin \angle A B Q)(|Q B|) /(|A Q|)
$$

Therefore

$$
\frac{\sin \angle K A C}{\sin \angle K A B}=\left(\frac{\sin \angle A C Q}{\sin \angle A B Q}\right) \cdot\left(\frac{|Q C|}{|Q B|}\right)=\left(\frac{\sin (\gamma+\alpha)}{\sin \left(\angle A B C+90^{\circ}\right)}\right) \cdot\left(\frac{1}{\sin \alpha}\right)=\frac{-\sin (\gamma+\alpha)}{(\cos \angle C B A) \sin \alpha}
$$

Similarly,

$$
\begin{aligned}
& \sin \angle K B A=\sin \angle B A P(|A P| /|B P|) \\
& \sin \angle K B C=\sin \angle B C P(|P C| /|B P|)
\end{aligned}
$$

and so

$$
\frac{\sin \angle K B A}{\sin \angle K B C}=\frac{\sin \left(\angle B A C+90^{\circ}\right)}{\sin (\beta+\gamma)} \cdot \frac{|A P|}{|P C|}=\frac{-\cos (\angle B A C) \sin \beta}{\sin (\beta+\gamma)} .
$$

Hence the condition for concurrency becomes

$$
\begin{gathered}
\frac{\sin (\gamma+\alpha)}{\sin \alpha} \cdot \frac{\sin \beta}{\sin (\gamma+\beta)}=1 \\
\Longleftrightarrow \sin \gamma \cot \alpha+\cos \gamma=\sin \gamma \cot \beta+\cos \gamma \\
\Longleftrightarrow \cot \alpha=\cot \beta \Longleftrightarrow \angle B C Q=\alpha=\beta=\angle A C P .
\end{gathered}
$$

This is the required result.
Solution 2. We do some preliminary work. Suppose that $P B$ and $A Q$ intersect at O, and that X and Y are the respective feet of the perpendiculars from C to $P B$ and $A Q$. Since $\angle C X P=\angle C A P=90^{\circ}$, $C A X P$ is concyclic and so $\angle A C P=\angle A X P$. Similarly $C Q B Y$ is concyclic and so $\angle B C Q=\angle B Y Q$. Since $\angle C X O=\angle C Y O=90^{\circ}, X$ and Y lie on the circle with diameter $C O$. Hence $\angle Y C O=\angle Y X O=\angle Y X B$.

Now suppose that $\angle B C Q=\angle A C P$. Let $C O$ produced meet $A B$ at N. Since $\angle A X P=\angle A C P=$ $\angle B C Q=\angle B Y Q$, it follows that $\angle A X B=\angle A Y B$ so that $B Y X A$ is concyclic and so $\angle Y X B=\angle Y A B$. Therefore

$$
\angle Y C N=\angle Y C O=\angle Y X B=\angle Y A B=\angle Y A N
$$

and $A N Y C$ is concyclic/ Hence $\angle C N A=\angle C Y A=90^{\circ}$ and N must coincide with M.
On the other hand, let $C M$ pass through O. Since $\angle C Y A=\angle C M A=90^{\circ}, A M Y C$ is concyclic so that

$$
\angle Y A B=\angle Y A M=\angle Y C M=\angle Y C O=\angle Y X B
$$

Therefore $B A X Y$ is concyclic and $\angle B X A=\angle B Y A \Rightarrow \angle A X P=\angle B Y Q$. since $C A X P$ and $C Y B Q$ are concyclic, $\angle A C P=\angle A X P=\angle B Y Q=\angle B C Q$.
471. Let I and O denote the incentre and the circumcentre, respectively, of triangle $A B C$. Assume that triangle $A B C$ is not equilateral. Prove that $\angle A I O \leq 90^{\circ}$ if and only if $2 B C \leq A B+C A$, with equality holding only simultaneously.

Solution 1. Wolog, let $A B \geq A C$. Suppose that the circumcircle of triangle $A B C$ intersects $A I$ in D. Construct the circle Γ with centre D that passes through B and C. By the symmetry of $A B$ and $A C$ in the angle bisector $A D$, this circle intersects segment $A B$ in a point F such that $A F=A C$. Let Γ intersect $A D$ at P. Then chords $C P$ and $F P$ have the same length. If $A B>A C$, this implies that P is on the angle bisector of angle $A B C$. If $A B=A C$, then $\angle A B C=\angle A D C=\angle P D C=2 \angle P B C$. In either case, $P=I$.

Let E be on the ray $B A$ produced such that $A E=A C$. Since $\angle D A C=\frac{1}{2} \angle B A C=\angle A E C$ and $\angle A D C=\angle A B C=\angle E B C$, triangles $A D C$ and $E B C$ are similar, and so

$$
I D: A D=C D: A D=B C: B E=B C:(A B+A C)
$$

But $\angle A I O \leq 90^{\circ}$ if and only if $I D / A D \leq 1 / 2$, and so is equivalent to $2 B C \leq A B+A C$, with equality holding only simultaneously. (Solution due to Wu Wei Chao in China.)

Solution 2. We have that $\angle A I O \leq 90^{\circ}$ if and only if $\cos \angle A I O \geq 0$, if and only if $|A O|^{2} \leq|O I|^{2}+|I A|^{2}$. Let a, b, c be the respective sidelengths of $B C, C A, A B$; let R be the circumradius and let r be the inradius of triangle $A B C$. Since, by Euler's formula, $|O I|^{2}=R^{2}-2 R r$, and $r=|I A| \sin (A / 2)$, the foregoing inequality is equivalent to

$$
2 R \leq \frac{r}{\sin ^{2}(A / 2)}=\frac{2 r}{1-\cos A}
$$

Applying $R=a /(2 \sin A), r=b c \sin A /(a+b+c)$ and $2 b c \cos A=b^{2}+c^{2}-a^{2}$, we find that

$$
\begin{aligned}
r-R(1-\cos A) & =\frac{b c \sin A}{a+b+c}-\frac{a(1-\cos A)}{2 \sin A} \\
& =\sin A\left[\frac{b c}{a+b+c}-\frac{a(1-\cos A)}{2 \sin ^{2} A}\right] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}[2 b c+2 b c \cos A-a(a+b+c)] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}\left[2 b c+b^{2}+c^{2}-a^{2}-a(a+b+c)\right] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}\left[(b+c)^{2}-2 a^{2}-a(b+c)\right] \\
& \frac{\sin A}{2(1+\cos A)(a+b+c)}[(b+c+a)(b+c-2 a)]
\end{aligned}
$$

Hence the inequality $R(1-\cos A) \leq r$ is equivalent to $2 a \leq b+c$. The desired result follows. (Solution due to Can A. Minh, USA)

Solution 3. [Y. Wang] Let $A I$ intersect the circumcircle of triangle $A B C$ at D. Since $A I$ bisects the angle $B A C$ and the arc $B C$, we have that $B D=B C$. Also,

$$
\angle D I C=\angle C A D+\angle A C I=\angle B C D+\angle B C I=\angle D C I
$$

whence $D C=D I=D B$. Using Ptolemy's Theorem, we have that

$$
A B \times C D+B D \times A C=A D \times B C
$$

so that

$$
A B \times D I+D I \times A C=(A I+I D) \times B C
$$

Hence

$$
k \equiv \frac{A B+A C}{B C}=1+\frac{A I}{I D}
$$

If $A B=A C$, then A, O, I are collinear. Let $k<2$; then $A I<I D$ and I lies between A and O and $\angle A I O=180^{\circ}$. Let $k>2$; then $A I>I D, O$ lies between A and I and $\angle A I O=0^{\circ}$. [If $k=2$, then $A I=I D$, the incentre and circumcentre coincide and the triangle is equilateral - the excluded case.]

Wolog, suppose that $A B>A C$. Then the circumcentre O lies within the triangle $A B D$. Let P be the foot of the perpendicular from O to $A D$. Then P is the midpoint of $A D$ and the angle $A I O$ is greater than, equal to or less than 90° according as I is in the segment $A P$, coincides with P or is in the segment $P D$. These correspond to $k<2, k=2$ and $k>2$, and the result follows.
472. Find all integers x for which

$$
(4-x)^{4-x}+(5-x)^{5-x}+10=4^{x}+5^{x}
$$

Solution. If $x<0$, then the left side is an integer, but the right side is positive and less than $\frac{1}{4}+\frac{1}{5}<1$. If $x>5$, then the left side is less than $\frac{1}{4}$, while the right side is a positive integer. Therefore, the only candidates for solution are the integers between 0 and 5 inclusive. Checking, we find that the only solution is $x=2$.
473. Let $A B C D$ be a quadrilateral; let M and N be the respective midpoint of $A B$ and $B C$; let P be the point of interesection of $A N$ and $B D$, and Q be the point of intersection of $D M$ amd $A C$. Suppose the $3 B P=B D$ and $3 A Q=A C$. Prove that $A B C D$ is a parallelogram.
Solution. Let $\overrightarrow{A B}=\mathbf{x}, \overrightarrow{B C}=\mathbf{y}$ and $\overrightarrow{C D}=a \mathbf{x}+b \mathbf{y}$, where a and b are real numbers. Then

$$
\overrightarrow{A D}=(a+1) \mathbf{x}+(b+1) \mathbf{y}
$$

and

$$
\overrightarrow{A N}=\mathbf{x}+\frac{1}{2} \mathbf{y}
$$

But $\overrightarrow{B D}=3 \overrightarrow{B P}$, so that

$$
\overrightarrow{A P}=\frac{2 \overrightarrow{A B}+\overrightarrow{A D}}{3}=\frac{a+3}{3} \mathbf{x}+\frac{b+1}{3} \mathbf{y} .
$$

Since the vectors $\overrightarrow{A P}$ and $\overrightarrow{A N}$ are collinear, $a+3: 1=b+1: \frac{1}{2}$, whence $a-2 b+1=0$. Also

$$
\overrightarrow{D M}=\overrightarrow{A M}-\overrightarrow{A D}=\left(\frac{1}{2}-a-1\right) \mathbf{x}-(b+1) \mathbf{y}=-\left(a+\frac{1}{2}\right) \mathbf{x}-(b+1) \mathbf{y}
$$

and

$$
\overrightarrow{D Q}=\overrightarrow{A Q}-\overrightarrow{A D}=\frac{1}{3}(\mathbf{x}+\mathbf{y})-(a+1) \mathbf{x}-(b+1) \mathbf{y}=-\frac{1}{3}[(3 a+2) \mathbf{x}+(3 b+2) \mathbf{y}]
$$

Since the vectors $\overrightarrow{D Q}$ and $\overrightarrow{D M}$ are collinear, we must have $(3 a+2):\left(a+\frac{1}{2}\right)=(3 b+2):(b+1)$, whence $2 a+b+2=0$. Therefore $(a, b)=(-1,0), \overrightarrow{C D}=-\mathbf{x}=\overrightarrow{B A}$ and $\overrightarrow{A D}=\mathbf{y}=\overrightarrow{B C}$. Hence $A B C D$ is a parallelogram.
474. Solve the equation for positive real x :

$$
\left(2^{\log _{5} x}+3\right)^{\log _{5} 2}=x-3
$$

Solution. Recall the identity $u^{\log _{b} v}=v^{\log _{b} u}$ for positive u, v and positive base $b \neq 1$. (Take logarithms to base b.) Then, for all real $t,\left(2^{t}+3\right)^{\log _{5} 2}=2^{\log _{5}\left(2^{t}+3\right)}$. This is true in particular when $t=\log _{5} x$.

Let $f(x)=2^{\log _{5} x}+3$ for $x>0$. Then $f(x)=x^{\log _{5} 2}+3$ and the equation to be solved is $f(f(x))=x$. The function $f(x)$ is an increasing function of the positive variable x. If $f(x)<x$, then $f(f(x))<f(x)$; if $f(x)>x$, then $f(f(x))>f(x)$. Hence, for $f(f(x))=x$ to be true, we must have $f(x)=x$. With $t=\log _{5} x$, the equation becomes $2^{t}+3=5^{t}$, or equivalently, $(2 / 5)^{t}+3(1 / 5)^{t}=1$. The left side is a stricly decreasing function of t, and so equals the right side only when $t=1$. Hence the unique solution of the equation is $x=5$.
475. Let $z_{1}, z_{2}, z_{3}, z_{4}$ be distinct complex numbers for which $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|z_{4}\right|$. Suppose that there is a real number $t \neq 1$ for which

$$
\left|t z_{1}+z_{2}+z_{3}+z_{4}\right|=\left|z_{1}+t z_{2}+z_{3}+z_{4}\right|=\left|z_{1}+z_{2}+t z_{3}+z_{4}\right| .
$$

Show that, in the complex plane, $z_{1}, z_{2}, z_{3}, z_{4}$ lie at the vertices of a rectangle.

Solution. Let $s=z_{1}+z_{2}+z_{3}+z_{4}$. Then

$$
\left|s-(1-t) z_{1}\right|=\left|s-(1-t) z_{2}\right|=\left|s-(1-t) z_{3}\right|
$$

Therefore, s is equidistant from the three distinct points $(1-t) z_{1},(1-t) z_{2}$ and $(1-t) z_{3}$; but these three points are on the circle with centre 0 and radius $(1-t) z_{1}$. Therefore $s=0$.

Since $z_{1}-\left(-z_{2}\right)=z_{1}+z_{2}=-z_{3}-z_{4}=\left(-z_{4}\right)-z_{3}$ and $z_{2}-\left(-z_{3}\right)=z_{2}+z_{3}=-z_{4}-z_{1}=\left(-z_{4}\right)-z_{1}$, $z_{1},-z_{2}, z_{3}$ and $-z_{4}$ are the vertices of a parallelogram inscribed in a circle centered at 0 , and hence of a rectangle whose diagonals intersect at 0 . Therefore, $-z_{2}$ is the opposite of one of z_{1}, z_{3} and $-z_{4}$. Since z_{2} is unequal to z_{1} and z_{3}, we must have that $-z_{2}=z_{4}$. Also $z_{1}=-z_{3}$. Hence z_{1}, z_{2}, z_{3} and z_{4} are the vertices of a rectangle.
476. Let p be a positive real number and let $\left|x_{0}\right| \leq 2 p$. For $n \geq 1$, define

$$
x_{n}=3 x_{n-1}-\frac{1}{p^{2}} x_{n-1}^{3} .
$$

Determine x_{n} as a function of n and x_{0}.
Solution. Let $x_{n}=2 p y_{n}$ for each nonnegative integer n. Then $\left|y_{0}\right| \leq 1$ and $y_{n}=3 y_{n-1}-4 y_{n-1}^{3}$. Recall that

$$
\sin 3 \theta=\sin 2 \theta \cos \theta+\sin \theta \cos 2 \theta=2 \sin \theta\left(1-\sin ^{2} \theta\right)+\sin \theta\left(1-2 \sin ^{2} \theta\right)=3 \sin \theta-4 \sin ^{3} \theta
$$

Select $\theta \in[-\pi / 2, \pi / 2]$. Then, by induction, we determine that $y_{n}=\sin 3^{n} \theta$ and $x_{n}=2 p \sin 3^{n} \theta$, for each nonnegative integer n, where $\theta=\arcsin \left(x_{0} / 2 p\right)$.
477. Let S consist of all real numbers of the form $a+b \sqrt{2}$, where a and b are integers. Find all functions that map S into the set \mathbf{R} of reals such that (1) f is increasing, and (2) $f(x+y)=f(x)+f(y)$ for all x, y in S.

Solution. Since $f(0)=f(0)+f(0), f(0)=0$ and $f(x) \geq 0$ for $x \geq 0$. Let $f(1)=u$ and $f(\sqrt{2})=v ; u$ and v are both nonnegative. Since $f(0)=f(x)+f(-x), f(-x)=-\bar{f}(x)$ for all x. Since, by induction, it can be shown that $f(n x)=n f(x)$ for every positive integer n, it follows that

$$
f(a+b \sqrt{2})=a u+b v
$$

for every pair (a, b) of integers.
Since f is increasing, for every positive integer n, we have that

$$
f(\lfloor n \sqrt{2}\rfloor) \leq f(n \sqrt{2}) \leq f(\lfloor n \sqrt{2}\rfloor+1)
$$

so that

$$
\lfloor n \sqrt{2}\rfloor u \leq n v \leq(\lfloor n \sqrt{2}\rfloor+1) u
$$

Therefore,

$$
\left(\sqrt{2}-\frac{1}{n}\right) u \leq\left(\frac{\lfloor n \sqrt{2}\rfloor}{n}\right) u \leq v \leq \frac{1}{n}(\lfloor n \sqrt{2}\rfloor+1) u \leq\left(\sqrt{2}+\frac{1}{n}\right) u
$$

for every positive integer n. It follows that $v=u \sqrt{2}$, so that $f(x)=u x$ for every $x \in S$. It is readily checked that this equation satisfies the conditions for all nonegative u.
478. Solve the equation

$$
\sqrt{2+\sqrt{2+\sqrt{2+x}}}+\sqrt{3} \sqrt{2-\sqrt{2+\sqrt{2+x}}}=2 x
$$

for $x \geq 0$
Solution. Since $2-\sqrt{2+\sqrt{2+x}} \geq 0$, we must have $0 \leq x \leq 2$. Therefore, there exists a number $t \in\left[0, \frac{1}{2} \pi\right]$ for which $\cos t=\frac{1}{2} x$. Now we have that,

$$
\begin{aligned}
\sqrt{2+\sqrt{2+\sqrt{2+x}}} & =\sqrt{2+\sqrt{2+\sqrt{2+2 \cos t}}} \\
& =\sqrt{2+\sqrt{2+\sqrt{4 \cos ^{2}(t / 2)}}}=\sqrt{2+\sqrt{2+2 \cos (t / 2)}} \\
& =\sqrt{2+2 \cos (t / 4)}=2 \cos (t / 8) .
\end{aligned}
$$

Similarly, $\sqrt{2-\sqrt{2+\sqrt{2+x}}}=2 \sin (t / 8)$. Hence the equation becomes

$$
2 \cos \frac{t}{8}+2 \sqrt{3} \sin \frac{t}{8}=4 \cos t
$$

or

$$
\frac{1}{2} \cos \frac{t}{8}+\frac{\sqrt{3}}{2} \sin \frac{t}{8}=\cot t
$$

Thus,

$$
\cos \left(\frac{\pi}{3}-\frac{t}{8}\right)=\cos t
$$

Since the argument of the cosine on the left side lies between 0 and $\pi / 3$, we must have that $(\pi / 3)-(t / 8)=t$, or $t=8 \pi / 27$.
479. Let x, y, z be positive integer for which

$$
\frac{1}{x}+\frac{1}{y}=\frac{1}{z}
$$

and the greatest common divisor of x and z is 1 . Prove that $x+y, x-z$ and $y-z$ are all perfect squares. Give two examples of triples (x, y, z) that satisfy these conditions.

Solution 1. [G. Ghosn] Since $(1 / y)=(x-z) /(x z)$ and $\operatorname{gcd}(x, x-z)=\operatorname{gcd}(z, x-z)=1$, the fractions on both sides of the equation are in lowest terms, and so $x-z=1$ and $x z=y$. Hence $x+y=x(1+z)=x^{2}$ and $y-z=z(x-1)=z^{2}$.

Solution 2. Since $z(x+y)=x y$ and the greatest common divisor of x and z is $1, x$, being a divisor of $z(x+y)$ must be a divisor of $x+y$ and so of y. Let $y=u x$ for some positive integer u. Then $z(1+u)=u x$. Since u and $1+u$ have greatest common divisor $1, u$ must divide z and $1+u$ must divide x, Hence $z=u v$ and $x=(1+u) w$, for some positive integers v and w. Therefore $u v(1+u)=u(1+u) w$, whence $v=w$.

Therefore $(x, y, z)=((1+u) v, u(1+u) v, u v)$. Since x and z have greatest common divisor $1, v=1$ and $(x, y, z)=(1+u, u(1+u), u)$. This satisfies the given equation as well as $x+y=(1+u)^{2}=x^{2}, x-z=1$ and $y-z=u^{2}=z^{2}$. Particular examples are $(x, y, z)=(2,2,1),(3,6,2),(4,12,3),(5,20,4)$.

Solution 3. We have that $z(x+y)=x y$ and $x(y-z)=y z$. Since $\operatorname{gcd}(x, z)=1, z$ and x both must divide y, so that $y=v z=w x$ for some positive integers v and w. Since $z(1+w) x=x v z, 1+w=v$ and $\operatorname{gcd}(v, w)=1$. Since $w x=v z$, we must have that $x=v$ and $z=w$ and $y=v w$. This satisfies the equation as well as $x+y=v^{2}, x-z=1$ and $y-z=w^{2}$.

Solution 4. [K. Huynh] Observe that $x>y$ and $z>y$. From the equation, we obtain that $x z+y z=x y$ whence $(x-z)(y-z)=z^{2}$. Since $\operatorname{gcd}(x, z)=1$, there is no prime that divides $x-z$ and z^{2}, so that gcd $\left(x-z, z^{2}\right)=1$. Therefore $x-z=1, y-z=z^{2}, y=z^{2}+z$ and $x+y=(z+1)^{2}$.
480. Let a and b be positive real numbers for which $60^{a}=3$ and $60^{b}=5$. Without the use of a calculator or of logarithms, determine the value of

$$
12^{\frac{1-a-b}{2(1-b)}} .
$$

Solution 1. [V. Zhou]

$$
\begin{aligned}
12^{\frac{1-a-b}{2(1-b)}} & =\left(\frac{60}{5}\right)^{\frac{1-a-b}{2(1-b)}}=60^{(1-b) \cdot\left(\frac{1-a-b}{2(1-b)}\right)} \\
& =\left(\frac{60}{60^{a+b}}\right)^{\frac{1}{2}}=\left(\frac{60}{60^{a} \cdot 60^{b}}\right)^{\frac{1}{2}} \\
& =\left(\frac{60}{3 \times 5}\right)^{\frac{1}{2}}=2
\end{aligned}
$$

Solution 2. Since $60^{b}=5,12^{b}=5^{1-b}$ and $5=12^{b /(1-b)}$. Since $60^{a}=3,2^{2} 5^{a} 12^{a}=12$. Therefore

$$
2^{2}=12^{1-a} 5^{-a}=12^{1-a} 12^{-a b /(1-b)}=12^{(1-a-b+a b-a b) /(1-b)}=12^{(1-a-b) /(1-b)}
$$

Therefore $2=12^{(1-a-b) / 2(1-b)}$.
Solution 3. [A. Guo; D. Shi] Since $a=\log _{60} 3$ and $b=\log _{60} 5$,

$$
1-(a+b)=1-\log _{60}(15)=\log _{60}(60 / 15)=\log _{60} 4
$$

Also, $1-b=1-\log _{60} 5=\log _{60} 12$, so that

$$
\frac{1-a-b}{1-b}=\frac{\log _{60} 4}{\log _{60} 12}=\log _{12} 4=2 \log _{12} 2 .
$$

Therefore

$$
12^{\frac{1-a-b}{2(1-b)}}=12^{\log _{12} 2}=2
$$

481. In a certain town of population $2 n+1$, one knows those to whom one is known. For any set A of n citizens, there is some person among the other $n+1$ who knows everyone in A. Show that some citizen of the town knows all the others.

Solution 1. [K. Huynh] We prove that there is a set of $n+1$ people in the town, each of whom knows (and is known by) each of the rest. First, observe that for any set of k people, with $k \leq n$, there is a person not among them who knows them all. This follows by augmenting the set to n people and applying the condition of the problem.

Let p_{1} be any person. There is a person, say p_{2} who knows p_{1}. A person p_{3} can be found who knows both p_{1} and p_{2}, so that $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a triplet each of whom knows the other two. Suppose, as an induction hypothesis, that $3 \leq k \leq n$, and $\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$ is a set of k people any pair of whom know each other. By the foregoing observation, there is another person p_{k+1} who knows them all. By induction, we can find a set $\left\{p_{1}, p_{2}, \cdots, p_{n+1}\right\}$, each pair of whom know each other.

Consider the remaining n people. There must be one among the p_{i} who knows all of these remaining people. This person p_{i} therefore knows everyone.

Solution 2. Let us suppose that the persons are numbered from 0 to $2 n$ inclusive. The notation ($a: a_{1}, a_{2}, \cdots, a_{k}$) will mean that a is knows and is known by each of $a_{1}, a_{2}, \cdots, a_{k}$. Begin with the set $\{1,2, \cdots, n\}$; some person, say 0 , knows everyone in this set, so that

$$
(0: 1,2,3, \cdots, n) .
$$

If person 0 , knows everyone else, then we are done. Otherwise, there is a person, say, $n+1$, not known to 0 , so that everyone in the set $\{n+1, n+2, \cdots, 2 n\}$, is known by a person in the first set, say 1 , so that

$$
(1: 0, n+1, n+2, \cdots, 2 n)
$$

Consider the set $\{0,2,3, \cdots, n\}$. If 1 knows everyone in this set, then 1 knows everyone and we are done. If 1 does not know everyone in this set, then there is someone else, say $n+1$, who does, so that

$$
(n+1: 0,1, \cdots, n) \quad \text { and } \quad(0: 1,2, \cdots, n+1) .
$$

If 0 knows everyone in the set $\{1, n+2, \cdots, 2 n\}$, then 0 knows everyone; if $n+1$ knows everyone in this set, then $n+1$ knows everyone, and we are done. If not, then there is a person 2 , say, who knows everyone in the set:

$$
(2: 0,1, n+1, n+2, \cdots, 2 n)
$$

Consider the set $\{0,3, \cdots, n, n+1\}$. If 1 or 2 knows everyone in this set, then 1 or 2 knows everybody and we are done. Otherwise, there is a person, say $n+2$ who knows everyone in the set, so that

$$
(n+2: 0,1,2, \cdots, n+1) \quad \text { and } \quad(0: 1,2, \cdots, n+1, n+2) .
$$

We can continue on in this way either until we find someone that knows everyone, or until we reach the i th stage for which

$$
(i: 0,1,2, \cdots, i-1, n+1, \cdots, 2 n) \quad \text { and } \quad(n+i: 0,1,2, \cdots, n, n+1, \cdots, n+i-1)
$$

If we get to the nth stage, then n and $2 n$ each know everyone.
482. A trapezoid whose parallel sides have the lengths a and b is partitioned into two trapezoids of equal area by a line segment of length c parallel to these sides. Determine c as a function of a and b.

Solution. Let u be the distance between the segment of length a and that of length c, and v the distance between the segment of length c and that of length b. Then

$$
\frac{u+v}{u}=\frac{b-a}{c-a}
$$

From the area condition, we have that

$$
2\left(\frac{c+a}{2}\right) u=\left(\frac{b+a}{2}\right)(u+v)=\left(\frac{b^{2}-a^{2}}{2(c-a)}\right) u
$$

whence $2\left(c^{2}-a^{2}\right)=b^{2}-a^{2}$ and $c^{2}=\frac{1}{2}\left(a^{2}+b^{2}\right)$. Therefore

$$
c=\sqrt{\frac{a^{2}+b^{2}}{2}} .
$$

483. Let A and B be two points on the circumference of a circle, and E be the midpoint of arc $A B$ (either arc will do). Let P be any point on the minor arc $E B$ and N the foot of the perpendicular from E to $A P$. Prove that $A N=N P+P B$.

Solution 1. Produce $A N P$ to M so that $A N=N M$. Then $E M=A E=E B$. Hence $\angle E B M=\angle E M B$, so that

$$
\angle P B M=\angle E B M-\angle E B P=\angle E M B-\angle E A P=\angle E M B-\angle E M A=\angle P M B
$$

Therefore $P B=P M$, so that

$$
A N=N M=N P+P M=N P+P B
$$

Solution 2. [V. Zhou] Determine Q on $A N$ so that $A Q=B P$. Then, also, $\angle E A Q=\angle E A P=\angle E P B$ and $A E=E B$, so that triangles $A E Q$ and $B E P$ are congruent. Hence $E Q=E P$ and so $Q N=N P$. Therefore $A N=Q N+A Q=N P+P B$.

Solution 3. [Y. Wang] Let O be the centre and r the radius of the circle. Let F and G be the respective midpoints of $A P$ and $A B$. Then $F G \| B P$ and, since $\angle A F O=\angle A G O=90^{\circ}$, the quadrilateral $A F G O$ is concyclic.

Let $\alpha=\angle A O F=\angle A G F$ and $\beta=\angle A O E=\angle B O E$. Then

$$
\angle P A B=\angle F A G=\angle F O G=\angle F O E=\angle N E O=\beta-\alpha
$$

Also, $|F N|=|O E| \sin (\beta-\alpha)=r \sin (\beta-\alpha)$ and $|A F|=r \sin \alpha$. By the Law of Sines applied to triangle $A F G$,

$$
\frac{|F G|}{\sin (\beta-\alpha)}=\frac{|A F|}{\sin \alpha}=r
$$

whence $|F G|=r \sin (\beta-\alpha)=|F N|$. Hence $A N=P F+F N=P N+2 F N=P N+2 F G=N P+P B$.
484. $A B C$ is a triangle with $\angle A=40^{\circ}$ and $\angle B=60^{\circ}$. Let D and E be respective points of $A B$ and $A C$ for which $\angle D C B=70^{\circ}$ and $\angle E B C=40^{\circ}$. Furthermore, let F be the point of intersection of $D C$ and $E B$. Prove that $A F \perp B C$.

Solution 1. [J. Schneider] Let $A H$ be the altitude from A to $B C$. We apply the converse of Ceva's Theorem in the trigonometric form to show that the cevians $A H, B E$ and $C D$ concur.

$$
\frac{\sin 30^{\circ} \sin 40^{\circ} \sin 10^{\circ}}{\sin 10^{\circ} \sin 20^{\circ} \sin 70^{\circ}}=\frac{\sin 30^{\circ}\left(2 \sin 20^{\circ} \cos 20^{\circ}\right)}{\sin 20^{\circ} \cos 20^{\circ}}=2 \sin 30^{\circ}=1
$$

Hence $A H, B E$ and $C D$ concur, so that $A H$ passes through F and the result follows.
Solution 2. [A. Siddhour] In triangle $B C F$, since $\angle C B F=40^{\circ}$ and $\angle C B F=40^{\circ}$, it follows that $\angle B F C=70^{\circ}=\angle C B F$ and $B F=B C$. Hence $|B F|=a$ (using the standard convention for lengths of the sides of the triangle $A B C$). Assign coordinates:

$$
B \sim(0,0), \quad C \sim(a, 0), \quad A \sim\left(c \cos 60^{\circ}, c \sin 60^{\circ}\right), \quad F \sim\left(a \cos 40^{\circ}, a \sin 40^{\circ}\right.
$$

By the Law of sines, we have that $c \sin 40^{\circ}=a \sin 80^{\circ}$, whence $c=2 a \cos 40^{\circ}$.
We have that

$$
\begin{aligned}
\overrightarrow{F A} \cdot \overrightarrow{B C} & =\left(c \cos 60^{\circ}-a \cos 40^{\circ}, c \sin 60^{\circ}-a \sin 60^{\circ}\right) \cdot(a, 0) \\
& =a\left(2 a \cos 40^{\circ} \cos 60^{\circ}-a \cos 40^{\circ}=a \cos 40^{\circ}-a \cos 40^{\circ}=0\right.
\end{aligned}
$$

from which it follows that $A F \perp B C$.
Solution 3. [Y. Wang] The result will follow if one can show that $\angle F A C=10^{\circ}$. Since $\angle F C A=$ $\angle B C A-\angle D C B=80^{\circ}-70^{\circ}=10^{\circ}$, it is enough to show that the perpendicular from F to $A C$ bisects $A C$, i.e., $2|C F| \cos \angle F C A=|A C|$.

Since $\angle F B C=40^{\circ}$ and $\angle B C F=70^{\circ}$, it follows that $\angle B F C=70^{\circ}$ so that $|C F|=2|B C| \cos 70^{\circ}$. Since $B C: A C=\sin \angle B A C: \sin \angle A B C=\sin 40^{\circ}: \sin 60^{\circ}$,

$$
2|C F| \cos \angle F C A=4|B C| \cos 70^{\circ} \cos 10^{\circ}=4|A C| \sin 40^{\circ} \sin 20^{\circ} \sin 80^{\circ} / \sin 60^{\circ}
$$

For each angle θ,

$$
\begin{aligned}
4 \sin \theta \sin \left(60^{\circ}+\theta\right) \sin \left(60^{\circ}-\theta\right) & =2 \sin \theta\left[\cos 2 \theta-\cos 120^{\circ}\right] \\
& =2 \sin \theta \cos 2 \theta+2 \sin \theta \sin 30^{\circ} \\
& =\sin 3 \theta-\sin \theta+\sin \theta=\sin 3 \theta
\end{aligned}
$$

When $\theta=20^{\circ}$, this becomes $4 \sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}=\sin 60^{\circ}$. so that $2|C F| \cos \angle F C A=|A C|$, as desired.
Solution 4. Since $\angle B F C=70^{\circ}=\angle B C D, B F=B C$. Let $|B F|=|B C|=1,|A F|=u$ and $|C F|=v$. Let $\angle B A F=\theta$, so that $\angle C A F=40^{\circ}-\theta$. By the Sine law applied to triangles $B F C$ and $A F C$,

$$
\frac{\sin 40^{\circ}}{\sin 70^{\circ}}=v=\frac{u \sin \left(40^{\circ}-\theta\right)}{\sin 10^{\circ}}
$$

By the Sine Law applied to triangle $\mathrm{ABF}, u=\sin 20^{\circ} / \sin \theta$. Hence

$$
\frac{\sin 40^{\circ}}{\sin 70^{\circ}}=\frac{\sin 20^{\circ} \sin \left(40^{\circ}-\theta\right)}{\sin 10^{\circ} \sin \theta}
$$

so that

$$
\sin 10^{\circ} \sin 40^{\circ} \sin \theta=\sin 20^{\circ} \cos 20^{\circ} \sin \left(40^{\circ}-\theta\right),
$$

whence

$$
2 \sin 10^{\circ} \sin \theta=\sin \left(40^{\circ}-\theta\right)=\sin 40^{\circ} \cos \theta-\cos 40^{\circ} \sin \theta
$$

and

$$
\sin \theta\left(2 \sin 10^{\circ}+\cos 40^{\circ}\right)=\cos \theta \sin 40^{\circ}
$$

Now

$$
\begin{aligned}
2 \sin 10^{\circ}+\cos 40^{\circ} & =\sin 10^{\circ}+\left(\sin 10^{\circ}+\sin 50^{\circ}\right) \\
& =\sin 10^{\circ}+2 \sin 30^{\circ} \cos 20^{\circ}=\sin 10^{\circ}+\sin 70^{\circ} \\
& =2 \sin 40^{\circ} \cos 30^{\circ}=\sqrt{3} \sin 40^{\circ}
\end{aligned}
$$

Hence $\sqrt{3} \sin \theta=\cos \theta$, so that $\cot \theta=\sqrt{3}$. Hence $\theta=30^{\circ}$ and the result follows.
Solution 5. [K. Huynh] Let a, b, c be the sides of triangle $A B C$ according to convention. Since $\angle B F C=$ $\angle F C B=70^{\circ},|B F|=|B C|=a$. Let the respective feet of the perpendiculars from A and F to $B C$ be P and Q. Then $|B P|=c \cos 60^{\circ}=c / 2$ and $|B Q|=a \cos 40^{\circ}$. From the Law of Sines, $a \sin 80^{\circ}=c \sin 40^{\circ}$, so that $c=2 a \cos 40^{\circ}$. Hence $B P=B Q$, and the result follows.

Solution 6. [G. Ghosn] Applying the Law of Sines to triangles BCE and BEA using their common side $B E$, we obtain that

$$
\frac{|E C|}{|E A|}=\left(\frac{\sin 40^{\circ}}{\sin 80^{\circ}}\right)\left(\frac{\sin 40^{\circ}}{\sin 20^{\circ}}\right)=\frac{\sin ^{2} 40^{\circ}}{\sin 20^{\circ} \sin 80^{\circ}}=\frac{2 \cos 20^{\circ} \sin 40^{\circ}}{\sin 80^{\circ}}
$$

Similarly,

$$
\frac{|D A|}{|D B|}=\frac{\sin 10^{\circ} \sin 60^{\circ}}{\sin 40^{\circ} \sin 70^{\circ}}
$$

By Ceva's therem

$$
\begin{aligned}
1 & =\frac{|E C|}{|E A|} \frac{|D A|}{|D B|} \frac{|M B|}{|M C|} \\
& =\frac{2 \cos 20^{\circ} \sin 40^{\circ} \sin 10^{\circ} \sin 60^{\circ}}{\sin 80^{\circ} \sin 40^{\circ} \sin 70^{\circ}} \frac{|M B|}{|M C|} \\
& =\frac{2 \cos 80^{\circ} \sin 60^{\circ}}{\sin 80^{\circ}} \frac{|M B|}{|M C|},
\end{aligned}
$$

whence we find that $|M B|:|M C|=\tan 80^{\circ}: \tan 60^{\circ}$.
Let $A N$ be an altitude of triangle $A B C$, so that $|A N|=|N B| \tan 60^{\circ}=|C N| \tan 80^{\circ}$. Then $M B$: $M C=N B: N C$, so that $M=N$ and the desired result follows.
485. From the foot of each altitude of the triangle, perpendiculars are dropped to the other two sides. Prove that the six feet of these perpendiculars lie on a circle.

Solution 1. Let $A B C$ be the triangle with altitudes $A P, B Q$ and $C R$; let H be the orthocentre. Let $P U \perp A B, Q V \perp B C, R W \perp C A, P X \perp C A, Q Y \perp A B$ and $R Z \perp B C$, where $U, Y \in A B ; V, Z \in B C ;$ and $W, X \in C A$.

Consider triangles $A Q R$ and $A B C$. Since $A R H Q$ is concyclic (right angles at Q and R),

$$
\angle A R Q=\angle A H Q=\angle B H P=90^{\circ}-\angle H B P=90^{\circ}-\angle Q B C=\angle A C B
$$

Similarly, $\angle A Q R=\angle A B C$. Thus, triangles $A Q R$ and $A B C$ are similar, the similarity being implemented by a dilatation of centre A followed by a reflection about the bisector of angle $B A C$. Since $Q Y$ and $R W$ are altitudes of triangle $A Q R$, triangle $A Y W$ is formed from triangle $A Q R$ as triangle $A Q R$ is formed from triangle $A B C$. Hence triangles $A Y W$ and $A Q R$ are similar by the combination of a dilatation with centre A and a reflection about the bisector of angle $B A C$.

Therefore, triangle $A Y W$ and $A B C$ are directly similar and $Y W \| B C$. Similarly triangles $B Z U$ and $B C A$ as well as triangles $C X V$ and $C A B$ are similar and $Z U \| C A$ and $X V \| A B$. (We note that this means that $X W Y U Z V$ is a hexagon with opposite sides parallel, although this is not needed here.)

Since $P X \| H Q$ and $P U \| H R, A U: A R=A P: A H=A X: A Q$, so that there is a dilatation taking $U \rightarrow R, P \rightarrow H$ and $X \rightarrow Q$. Therefore $U X \| R Q$ and triangle $A X U$ is similar to triangle $A Q R$ and to triangle $A B C$.

Consider quadrilateral $U Z V X$.

$$
\begin{aligned}
\angle U Z V+\angle U X V & =\left(180^{\circ}-\angle B Z U\right)+\left(180^{\circ}-\angle A X U-\angle C X V\right) \\
& =\left(180^{\circ}-\angle A C B\right)+\left(180^{\circ}-\angle A B C-\angle B A C\right)=180^{\circ}
\end{aligned}
$$

Hence $U Z V X$ is concyclic. Similarly, $V X W Y$ and $W Y U Z$ are concyclic.
Since triangles $A Y W$ and $A X U$ are similar with $\angle A W Y=\angle A U X$ and $\angle A Y W=\angle A X U, X W Y U$ is concyclic. Similarly, $Y U Z V$ and $Z V X W$ are concylclic. Hence $X W Y U Z V$ is a hexagon, any consecutive four vertices of which are concylcic, and so is itself concyclic.

Solution 2. [K. Huynh] Let a, b, c be the lengths of the sides and A, B, C the angles of the triangle $A B C$ according to convention. Use the notation of Solution 1. We have that $|B U|=|B P| \cos B=(c \cos B) \cos B=$ $c \cos ^{2} B$. Similarly, $|B Z|=a \cos ^{2} B,|A Y|=c \cos ^{2} A$ and $|C V|=a \cos ^{2} C$. Therefore, $|B Y|=c\left(1-\cos ^{2} A\right)=$ $c \sin ^{2} A$ and $|C V|=a\left(1-\cos ^{2} C\right)=a \sin ^{2} C$.

Since $a \sin C=c \sin A$,

$$
\begin{aligned}
|B U||B Y| & =\left(c \cos ^{2} B\right)\left(a \sin ^{2} A\right)=\cos ^{2} B(c \sin A)^{2} \\
& =\cos ^{2} B(a \sin C)^{2}=\left(a \cos ^{2} B\right)\left(a \sin ^{2} C\right)=|B Z \| B V|
\end{aligned}
$$

from which, by a power-of-the-point argument [give details!], we deduce that $Y U Z V$ is concyclic. Similarly, $Z V X W$ and $X W Y U$ are concyclic.

Suppose that the circumcircle of $Y U Z V$ intersects $A Z$ at L and the circumcircle of $Z V X W$ intersects $A Z$ at M. Since $X W Y U$ is concyclic, $|A Y||A U|=|A W||A X|$. Therefore,

$$
|A L||A Z|=|A Y||A U|=|A W||A X|=|A M||A Z|
$$

Hence $L=M$. Thus, the circumcircles of $Y U Z V$ and $Z V X W$ share three noncollinear points, Z, V and $L=M$, and so must coincide. Similarly, each coincides with the circumcircle of $X W Y U$ and the result follows.

