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486. Determine all quintuplets (a, b, c, d, u) of nonzero integers for which

a

b
=

c

d
=

ab + u

cd + u
.

487. ABC is an isosceles triangle with ∠A = 100◦ and AB = AC. The bisector of angle B meets AC in D.
Show that BD + AD = BC.

488. A host is expecting a number of children, which is either 7 or 11. She has 77 marbles as gifts, and
distributes them into n bags in such a way that whether 7 or 11 children come, each will receive a
number of bags so that all 77 marbles will be shared equally among the children. What is the minimum
value of n?

489. Suppose n is a positive integer not less than 2 and that x1 ≥ x2 ≥ x3 ≥ · · · ≥ xn ≥ 0,

n∑
i=1

xi ≤ 400 and
n∑

i=1

x2
i ≥ 104 .

Prove that
√

x1 +
√

x2 ≥ 10. is it possible to have equality throughout? [Bonus: Formulate and prove
a generalization.]

490. (a) Let a, b, c be real numbers. Prove that

min [(a− b)2, (b− c)2, (c− a)2] ≤ 1
2
[a2 + b2 + c2] .

(b) Does there exist a number k for which

min [(a− b)2, (a− c)2, (a− d)2, (b− c)2, (b− d)2, (c− d)2] ≤ k[a2 + b2 + c2 + d2]

for any real numbers a, b, c, d? If so, determine the smallest such k.
[Bonus: Determine if there is a generalization.]
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491. Given that x and y are positive real numbers for which x+y = 1 and that m and n are positive integers
exceeding 1, prove that

(1− xm)n + (1− yn)m > 1 .

492. The faces of a tetrahedron are formed by four congruent triangles. if α is the angle between a pair of
opposite edges of the tetrahedron, show that

cos α =
sin(B − C)
sin(B + C)

where B and C are the angles adjacent to one of these edges in a face of the tetrahedron.

Solutions to Problems 465-485.

465. For what positive real numbers a is
3
√

2 +
√

a + 3
√

2−
√

a

an integer?

Solution 1. Let x = 3
√

2 +
√

a, y = 3
√

2−
√

a and z = x + y. Then

z3 = (x + y)3 = x3 + y3 + 3(4− a)1/3z = 4 + 3(4− a)1/3z .

Hence 27(4− a)z3 = (z3 − 4)3, whence

a = 4− (z3 − 4)3

27z3
=

108z3 − (z3 − 4)3

27z3
.

Since a ≥ 0, z must be either (1) a positive integer for which 108z3 ≥ (z3 − 4)3, or (2) a negative integer for
which 108z3 ≤ (z3 − 4)3.

Condition (1) forces 108 ≥ (z2 − (4/z))3 ≥ (z2 − 4)3, so that z = 1, 2. Condition (2) forces 108 ≥
(z2 − (4/z))3 ≥ z6, which is satisfied by no negative integer value of z. Hence, we must have that (z, a) =
(1, 5), (2, 100/27). Since z = x + y is equivalent to z3 = 4 + 3(4− a)1/3z, it is straightforward to check that
both these answers are correct. Hence a = 5 or a = 100/27.

Solution 2. [Yifan Wang] With x and y defined as in the first solution, note that x > y and that
x3 + y3 = (x + y)(x2 − xy + y2). Since x2 + y2 > (x + y)2/2 and −xy > −(x + y)2/4, we have that
4 > (x+ y)3/4, whence x+ y ≤ 2. Since x3 > −y3, x > −y, so that x+ y > 0. Hence x+ y = 1 or x+ y = 2.

When x + y = 1, x2 − xy + y2 = 4 and so xy = −1, and x = 1
2 (1 +

√
5), y = 1

2 (1 −
√

5). Therefore
4− a = x3y3 = −1 so that a = 5.

When x + y = 2, then x2 − xy + y2 = 2, so that xy = 2/3. Therefore x = 1
3 (3 +

√
3), y = 1

3 (3 −
√

3)
and 4− a = 8/27. Thus, a = 100/27. These solutions check out.

Solution 3. [A. Tavakoli] Denote the left side of the equation by f(a). When a ≥ 4,

0 ≤ f(a) = (
√

a + 2)1/3 − (
√

a− 2)1/3 =
4

(
√

a + 2)2/3 + (a− 4)1/3 + (
√

a− 2)2/3
≤ 41/3 < 3 .

Let 0 ≤ a ≤ 4; again f(a) > 0. Observe that

(
1
2
(u + v)

) 1
3

≥ 1
2
u

1
3 +

1
2
v

1
3
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for all nonnegative values of u and v. (This can be seen by using the concavity of the function t1/3, or from
the power-mean inequality (1/2)(s + t) ≤ [(1/2)(s3 + t3)]1/3.) Setting u = 3

√
2 +

√
a and v = 3

√
2−

√
a, we

find that 3 > 2× 21/3 ≥ f(a) > 0 with equality if and only if a = 0. Hence the only possible integer values
of f(a) are 0 and 1.

Let x = 3
√

2−
√

a, so that 2 +
√

a = 4− x3. Then

f(a) = 1 ⇐⇒ x + (4− x3)1/3 = 1

⇐⇒ 4− x3 = 1− 3x + 3x2 − x3

⇐⇒ x2 − x− 1 = 0 ⇐⇒ x = (1±
√

5)/2

⇐⇒ x3 = 2±
√

5 .

The larger root of the quadratic leads to x3 > 2 and so is extraneous. Hence x3 = 2−
√

5, and so
√

a =
√

5,
a = 5.

f(a) = 2 ⇐⇒ x + (4− x3)1/3 = 2

⇐⇒ 4− x3 = (2− x)3 = 8− 12x + 6x2 − x3

⇐⇒ 3x2 − 6x + 2 = 0 ⇐⇒ x =
3±

√
3

3
. .

Now, (
3±

√
3

3

)3

= 2± 10
√

3
9

.

The larger value of x leads to x3 > 2, and so is inadmissible. The smaller value of x leads to x3 = 2−(10
√

3/9)
and

√
a = (10

√
3/9), a = 100/27. Both values of a check out.

466. For a positive integer m, let m denote the sum of the digits of m. Find all pairs of positive integers
(m,n) with m < n for which (m)2 = n and (n)2 = m.

Solution. Let m = mk · · ·m1m0 where 0 ≤ mi ≤ 9 are the digits of m. Then

10k ≤ m < n = (mk + · · ·+ m0)2 ≤ [(k + 1)10]2 ,

whence 10k−2 ≤ (k + 1)2 and 0 ≤ k ≤ 3.

Hence m < n = (m3 + m2 + m1 + m0)2 ≤ (4× 9)2 = 362. Since m and n are both perfect squares, we
need only consider m = r2, where 1 ≤ r ≤ 36.

In the case that k = 3, m < 1 + 9 + 9 + 9 = 28. Since 282 < 1000 < m < n, there are no examples. In
the case that k = 2, m < 6 + 9 + 9 = 24 and so n2 ≤ 242. The only possibility is (m,n) = (169, 256). There
are no possibilities when k = 0 or k = 1.

Hence, the only number pair is (m,n) = (169, 256).

Comment. This is problem 621 from The College Mathematics Journal.

467. For which positive integers n does there exist a set of n distinct positive integers such that

(a) each member of the set divides the sum of all members of the set, and

(b) none of its proper subsets with two or more elements satisfies the condition in (a)?

Solution. When n = 1, condition (b) is satisfied vacuously, and any singleton will do. When n = 2,
such a set cannot be found. If a and b are any two positive integers, then condition (b) entails that both a
and b divide a + b, and so must divide each other. This cannot happen when a and b are distinct.
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When n ≥ 3, a set of the required type can be found. For example, let

Sn = {1, 2, 2× 3, 2× 32, · · · 2× 3n−3, 3n−2 .

The sum of the elements in Sn is 2× 3n−2, which is divisible by each member of Sn.

Consider any proper subset R of Sn with at least three numbers. If 3n−2 belongs to R, then the sum of
the elements of R must be strictly between 3n−2 and 2× 3n−2, and so not divisible by 3n−2. If R does not
contain 3n−2, then its largest entry has the form 2 × 3k with 1 ≤ k ≤ n − 3. Then the sum of R is greater
than 2× 3k and does not exceed 1 + 2(1 + 3 + · · ·+ 3k) = 3k+1 < 2(2× 3k). Hence this sum is not divisible
by 2× 3k. As we have seen, no doubleton satisfies the condition. Hence (b) is satisfied for all subsets of Sn.

Comment. This is problem 1504 in the October, 1996 issue of Mathematics Magazine.

468. Let a and b be positive real numbers satisfying a + b ≥ (a− b)2. Prove that

xa(1− x)b + xb(1− x)a ≤ 1
2a+b−1

for 0 ≤ x ≤ 1, with equality if and only if x = 1
2 .

Comment. Denote the left side by f(x). When a = b, f(x) = 2xa(1 − x)a, which is maximized when
x = 1/2, its maximum value being 2 × 4−a. In the general case, the solution can be obtained by calculus.
Since f(0) = f(1) = 0 and the function possesses a derivative everywhere, the maximum occurs when
f ′(x) = 0 and 0 < x < 1. Wolog, assume that a < b. We have that

f ′(x) = xa−1(1− x)a−1[(a− (a + b)x)(1− x)b−a + (b− (a + b)x)xb−a] .

This solution can be found in Mathematics Magazine 70:4 (October, 1997), 301-302 (Problem 1505), and
is fairly technical. It would be nice to have a more transparent argument. Is there a solution that avoids
calculus, at least for rational a and b?

A second solution, employs the substitution 2x = 1− y to get the equivalent inequality

(1− y)a(1 + y)b + (1− y)b(1 + y)a ≤ 2

for |y| ≤ 1. Wolog, we can let a = b + c with c ≥ 0. Then the condition becomes 2b ≥ c2 − c. Then the
inequality is equivalent to

(1− y2)b[(1− y)c + (1 + y)c] ≤ 2 ,

for |y| ≤ 1.

Let 0 ≤ c ≤ 1. Then, for t > 0, the function tc is concave, so that, for u, v > 0,(
u + v

2

)c

≥ uc + vc

2
.

Setting (u, v) = (1 − y, 1 + y), we find that (1 − y)c + (1 + y)c ≤ 2 for |y| ≤ 1. Hence the inequality holds,
with equality occurring when y = 0 (x = 1/2).

When c > 1, I do not have a clean solution. First, it suffices to consider the inequality when b is replaced
by 1

2 (c2 − c). Thus, we need to establish that

(1− y2)(1/2)(c2−c)[(1− y)c + (1− y)c] ≤ 2 (∗)

for |y| ≤ 1. The derivative of the natural logarithm of the left side is a positive multiple of

g(y) = (1 + y)c(1− cy)− (1− y)c(1 + cy) .
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If this can be shown to be nonpositive, then the result will follow. An equivalent inequality is(
1− 2y

1 + y

)2

=
(

1− y

1 + y

)c

≥
(

1− cy

1 + cy

)
=

(
1− 2cy

1 + cy

)
,

for c > 1 and |y| ≤ 1.

469. Solve for t in terms of a, b in the equation√
t3 + a3

t + a
+

√
t3 + b3

t + b
=

√
a3 − b3

a− b

where 0 < a < b.

Solution 1. The equation is equivalent to√
t2 − at + a2 +

√
t2 − bt + b2 =

√
a2 + ab + b2 .

Square both sides of the equation, collect the nonradical terms on one side and the radical on the other and
square again. Once the polynomials are expanded and like terms collected, we obtain the equation

0 = t2(a + b)2 − 2ab(a + b)t + a2b2 = [t(a + b)− ab]2 ,

whence t = ab/(a + b). This can be checked by substituting it into the equation.

Solution 2. [Y. Wang] As in solution 1, we can find an equivalent equation, which can then be manipu-
lated to√

(t− (a/2))2 + (
√

3a/2)2 +
√

(t− (b/2))2 + (−
√

3b/2)2 =
√

(a/2− b/2)2 + (
√

3a/2 +
√

3b/2) .

If we consider the points A ∼ (a/2,
√

3a/2), B ∼ (b/2,−
√

3b/2) and T ∼ (t, 0), then we can interpret this
equation as stating that AT + BT = AB. By the triangle inequality, we see that T must lie on AB, so that
the slopes of AT and BT are equal. Thus

√
3a

a− 2t
=

√
3b

2t− b
,

whence t = ab/(a + b).

470. Let ABC, ACP and BCQ be nonoverlapping triangles in the plane with angles CAP and CBQ right.
Let M be the foot of the perpendicular from C to AB. Prove that lines AQ, BP and CM are concurrent
if and only if ∠BCQ = ∠ACP .

Solution 1. [A. Tavakoli] Let BP and AQ intersect at K. Let ∠BCQ = α, ∠ACP = β and ∠BCA = γ.
By the trigonometric form of Ceva’s theorem, CM , AP and BQ are concurrent if and only if

sin∠BCM

sin∠ACM
· sin∠KAC

sin∠KAB
· sin∠KBA

sin∠KBC
= 1 . (1)

This holds whether K lies inside or outside of the triangle.

We have that sin∠BCM = cos ∠CBA, sin∠ACM = cos ∠CAB, and, by the Law of Sines applied to
triangles ACQ and ABQ,

sin∠KAC = sin∠QAC = (sin∠ACQ)(|QC|)/(|AQ|) ,
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and
sin∠KAB = sin∠QAB = (sin∠ABQ)(|QB|)/(|AQ|) .

Therefore

sin∠KAC

sin∠KAB
=

(
sin∠ACQ

sin∠ABQ

)
·
(
|QC|
|QB|

)
=

(
sin(γ + α)

sin(∠ABC + 90◦)

)
·
(

1
sinα

)
=

− sin(γ + α)
(cos ∠CBA) sinα

.

Similarly,
sin∠KBA = sin∠BAP (|AP |/|BP |)

sin∠KBC = sin∠BCP (|PC|/|BP |)

and so
sin∠KBA

sin∠KBC
=

sin(∠BAC + 90◦)
sin(β + γ)

· |AP |
|PC|

=
− cos(∠BAC) sinβ

sin(β + γ)
.

Hence the condition for concurrency becomes

sin(γ + α)
sinα

· sinβ

sin(γ + β)
= 1

⇐⇒ sin γ cot α + cos γ = sin γ cot β + cos γ

⇐⇒ cot α = cot β ⇐⇒ ∠BCQ = α = β = ∠ACP .

This is the required result.

Solution 2. We do some preliminary work. Suppose that PB and AQ intersect at O, and that X and
Y are the respective feet of the perpendiculars from C to PB and AQ. Since ∠CXP = ∠CAP = 90◦,
CAXP is concyclic and so ∠ACP = ∠AXP . Similarly CQBY is concyclic and so ∠BCQ = ∠BY Q. Since
∠CXO = ∠CY O = 90◦, X and Y lie on the circle with diameter CO. Hence ∠Y CO = ∠Y XO = ∠Y XB.

Now suppose that ∠BCQ = ∠ACP . Let CO produced meet AB at N . Since ∠AXP = ∠ACP =
∠BCQ = ∠BY Q, it follows that ∠AXB = ∠AY B so that BY XA is concyclic and so ∠Y XB = ∠Y AB.
Therefore

∠Y CN = ∠Y CO = ∠Y XB = ∠Y AB = ∠Y AN

and ANY C is concyclic/ Hence ∠CNA = ∠CY A = 90◦ and N must coincide with M .

On the other hand, let CM pass through O. Since ∠CY A = ∠CMA = 90◦, AMY C is concyclic so
that

∠Y AB = ∠Y AM = ∠Y CM = ∠Y CO = ∠Y XB .

Therefore BAXY is concyclic and ∠BXA = ∠BY A ⇒ ∠AXP = ∠BY Q. Since CAXP and CY BQ are
concyclic, ∠ACP = ∠AXP = ∠BY Q = ∠BCQ.

471. Let I and O denote the incentre and the circumcentre, respectively, of triangle ABC. Assume that
triangle ABC is not equilateral. Prove that ∠AIO ≤ 90◦ if and only if 2BC ≤ AB + CA, with equality
holding only simultaneously.

Solution 1. Wolog, let AB ≥ AC. Suppose that the circumcircle of triangle ABC intersects AI in D.
Construct the circle Γ with centre D that passes through B and C. By the symmetry of AB and AC in the
angle bisector AD, this circle intersects segment AB in a point F such that AF = AC. Let Γ intersect AD
at P . Then chords CP and FP have the same length. If AB > AC, this implies that P is on the angle
bisector of angle ABC. If AB = AC, then ∠ABC = ∠ADC = ∠PDC = 2∠PBC. In either case, P = I.

Let E be on the ray BA produced such that AE = AC. Since ∠DAC = 1
2∠BAC = ∠AEC and

∠ADC = ∠ABC = ∠EBC, triangles ADC and EBC are similar, and so

ID : AD = CD : AD = BC : BE = BC : (AB + AC) .
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But ∠AIO ≤ 90◦ if and only if ID/AD ≤ 1/2, and so is equivalent to 2BC ≤ AB + AC, with equality
holding only simultaneously. (Solution due to Wu Wei Chao in China.)

Solution 2. We have that ∠AIO ≤ 90◦ if and only if cos ∠AIO ≥ 0, if and only if |AO|2 ≤ |OI|2 + |IA|2.
Let a, b, c be the respective sidelengths of BC, CA, AB; let R be the circumradius and let r be the inradius of
triangle ABC. Since, by Euler’s formula, |OI|2 = R2 − 2Rr, and r = |IA| sin(A/2), the foregoing inequality
is equivalent to

2R ≤ r

sin2(A/2)
=

2r

1− cos A
.

Applying R = a/(2 sinA), r = bc sinA/(a + b + c) and 2bc cos A = b2 + c2 − a2, we find that

r −R(1− cos A) =
bc sinA

a + b + c
− a(1− cos A)

2 sinA

= sinA

[
bc

a + b + c
− a(1− cos A)

2 sin2 A

]
sinA

2(1 + cos A)(a + b + c)
[2bc + 2bc cos A− a(a + b + c)]

sinA

2(1 + cos A)(a + b + c)
[2bc + b2 + c2 − a2 − a(a + b + c)]

sinA

2(1 + cos A)(a + b + c)
[(b + c)2 − 2a2 − a(b + c)]

sinA

2(1 + cos A)(a + b + c)
[(b + c + a)(b + c− 2a)] .

Hence the inequality R(1− cos A) ≤ r is equivalent to 2a ≤ b + c. The desired result follows. (Solution due
to Can A. Minh, USA)

Solution 3. [Y. Wang] Let AI intersect the circumcircle of triangle ABC at D. Since AI bisects the
angle BAC and the arc BC, we have that BD = BC. Also,

∠DIC = ∠CAD + ∠ACI = ∠BCD + ∠BCI = ∠DCI ,

whence DC = DI = DB. Using Ptolemy’s Theorem, we have that

AB × CD + BD ×AC = AD ×BC ,

so that
AB ×DI + DI ×AC = (AI + ID)×BC .

Hence
k ≡ AB + AC

BC
= 1 +

AI

ID
.

If AB = AC, then A,O, I are collinear. Let k < 2; then AI < ID and I lies between A and O and
∠AIO = 180◦. Let k > 2; then AI > ID, O lies between A and I and ∠AIO = 0◦. [If k = 2, then AI = ID,
the incentre and circumcentre coincide and the triangle is equilateral – the excluded case.]

Wolog, suppose that AB > AC. Then the circumcentre O lies within the triangle ABD. Let P be the
foot of the perpendicular from O to AD. Then P is the midpoint of AD and the angle AIO is greater than,
equal to or less than 90◦ according as I is in the segment AP , coincides with P or is in the segment PD.
These correspond to k < 2, k = 2 and k > 2, and the result follows.

472. Find all integers x for which

(4− x)4−x + (5− x)5−x + 10 = 4x + 5x .
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Solution. If x < 0, then the left side is an integer, but the right side is positive and less than 1
4 + 1

5 < 1.
If x > 5, then the left side is less than 1

4 , while the right side is a positive integer. Therefore, the only
candidates for solution are the integers between 0 and 5 inclusive. Checking, we find that the only solution
is x = 2.

473. Let ABCD be a quadrilateral; let M and N be the respective midpoint of AB and BC; let P be the
point of interesection of AN and BD, and Q be the point of intersection of DM amd AC. Suppose the
3BP = BD and 3AQ = AC. Prove that ABCD is a parallelogram.

Solution. Let −−→AB = x, −−→BC = y and −−→CD = ax + by, where a and b are real numbers. Then

−−→
AD = (a + 1)x + (b + 1)y

and
−−→
AN = x +

1
2
y .

But −−→BD = 3−−→BP , so that
−→
AP =

2−−→AB +−−→
AD

3
=

a + 3
3

x +
b + 1

3
y .

Since the vectors −→AP and −−→AN are collinear, a + 3 : 1 = b + 1 : 1
2 , whence a− 2b + 1 = 0. Also

−−→
DM = −−→

AM −−−→AD =
(

1
2
− a− 1

)
x− (b + 1)y = −

(
a +

1
2

)
x− (b + 1)y

and
−−→
DQ = −→

AQ−−−→AD =
1
3
(x + y)− (a + 1)x− (b + 1)y = −1

3
[(3a + 2)x + (3b + 2)y] .

Since the vectors −−→DQ and −−→DM are collinear, we must have (3a + 2) : (a + 1
2 ) = (3b + 2) : (b + 1), whence

2a + b + 2 = 0. Therefore (a, b) = (−1, 0), −−→CD = −x = −−→
BA and −−→

AD = y = −−→
BC. Hence ABCD is a

parallelogram.

474. Solve the equation for positive real x:

(2log5 x + 3)log5 2 = x− 3 .

Solution. Recall the identity ulogb v = vlogb u for positive u, v and positive base b 6= 1. (Take logarithms
to base b.) Then, for all real t, (2t + 3)log5 2 = 2log5(2

t+3). This is true in particular when t = log5 x.

Let f(x) = 2log5 x + 3 for x > 0. Then f(x) = xlog5 2 + 3 and the equation to be solved is f(f(x)) = x.
The function f(x) is an increasing function of the positive variable x. If f(x) < x, then f(f(x)) < f(x); if
f(x) > x, then f(f(x)) > f(x). Hence, for f(f(x)) = x to be true, we must have f(x) = x. With t = log5 x,
the equation becomes 2t + 3 = 5t, or equivalently, (2/5)t + 3(1/5)t = 1. The left side is a stricly decreasing
function of t, and so equals the right side only when t = 1. Hence the unique solution of the equation is
x = 5.

475. Let z1, z2, z3, z4 be distinct complex numbers for which |z1| = |z2| = |z3| = |z4|. Suppose that there is
a real number t 6= 1 for which

|tz1 + z2 + z3 + z4| = |z1 + tz2 + z3 + z4| = |z1 + z2 + tz3 + z4| .

Show that, in the complex plane, z1, z2, z3, z4 lie at the vertices of a rectangle.
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Solution. Let s = z1 + z2 + z3 + z4. Then

|s− (1− t)z1| = |s− (1− t)z2| = |s− (1− t)z3| .

Therefore, s is equidistant from the three distinct points (1 − t)z1, (1 − t)z2 and (1 − t)z3; but these three
points are on the circle with centre 0 and radius (1− t)z1. Therefore s = 0.

Since z1 − (−z2) = z1 + z2 = −z3 − z4 = (−z4)− z3 and z2 − (−z3) = z2 + z3 = −z4 − z1 = (−z4)− z1,
z1, −z2, z3 and −z4 are the vertices of a parallelogram inscribed in a circle centered at 0, and hence of a
rectangle whose diagonals intersect at 0. Therefore, −z2 is the opposite of one of z1, z3 and −z4. Since z2 is
unequal to z1 and z3, we must have that −z2 = z4. Also z1 = −z3. Hence z1, z2, z3 and z4 are the vertices
of a rectangle.

476. Let p be a positive real number and let |x0| ≤ 2p. For n ≥ 1, define

xn = 3xn−1 −
1
p2

x3
n−1 .

Determine xn as a function of n and x0.

Solution. Let xn = 2pyn for each nonnegative integer n. Then |y0| ≤ 1 and yn = 3yn−1 − 4y3
n−1. Recall

that

sin 3θ = sin 2θ cos θ + sin θ cos 2θ = 2 sin θ(1− sin2 θ) + sin θ(1− 2 sin2 θ) = 3 sin θ − 4 sin3 θ .

Select θ ∈ [−π/2, π/2]. Then, by induction, we determine that yn = sin 3nθ and xn = 2p sin 3nθ, for each
nonnegative integer n, where θ = arcsin(x0/2p).

477. Let S consist of all real numbers of the form a + b
√

2, where a and b are integers. Find all functions
that map S into the set R of reals such that (1) f is increasing, and (2) f(x + y) = f(x) + f(y) for all
x, y in S.

Solution. Since f(0) = f(0) + f(0), f(0) = 0 and f(x) ≥ 0 for x ≥ 0. Let f(1) = u and f(
√

2) = v; u
and v are both nonnegative. Since f(0) = f(x) + f(−x), f(−x) = −f(x) for all x. Since, by induction, it
can be shown that f(nx) = nf(x) for every positive integer n, it follows that

f(a + b
√

2) = au + bv ,

for every pair (a, b) of integers.

Since f is increasing, for every positive integer n, we have that

f(bn
√

2c) ≤ f(n
√

2) ≤ f(bn
√

2c+ 1) ,

so that
bn
√

2cu ≤ nv ≤ (bn
√

2c+ 1)u .

Therefore, (√
2− 1

n

)
u ≤

(
bn
√

2c
n

)
u ≤ v ≤ 1

n
(bn

√
2c+ 1)u ≤

(√
2 +

1
n

)
u ,

for every positive integer n. It follows that v = u
√

2, so that f(x) = ux for every x ∈ S. It is readily checked
that this equation satisfies the conditions for all nonegative u.

478. Solve the equation √
2 +

√
2 +

√
2 + x +

√
3

√
2−

√
2 +

√
2 + x = 2x
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for x ≥ 0

Solution. Since 2 −
√

2 +
√

2 + x ≥ 0, we must have 0 ≤ x ≤ 2. Therefore, there exists a number
t ∈ [0, 1

2π] for which cos t = 1
2x. Now we have that,

√
2 +

√
2 +

√
2 + x =

√
2 +

√
2 +

√
2 + 2 cos t

=

√
2 +

√
2 +

√
4 cos2(t/2) =

√
2 +

√
2 + 2 cos(t/2)

=
√

2 + 2 cos(t/4) = 2 cos(t/8) .

Similarly,
√

2−
√

2 +
√

2 + x = 2 sin(t/8). Hence the equation becomes

2 cos
t

8
+ 2

√
3 sin

t

8
= 4 cos t

or
1
2

cos
t

8
+
√

3
2

sin
t

8
= cot t .

Thus,

cos
(

π

3
− t

8

)
= cos t .

Since the argument of the cosine on the left side lies between 0 and π/3, we must have that (π/3)−(t/8) = t,
or t = 8π/27.

479. Let x, y, z be positive integer for which
1
x

+
1
y

=
1
z

and the greatest common divisor of x and z is 1. Prove that x + y, x − z and y − z are all perfect
squares. Give two examples of triples (x, y, z) that satisfy these conditions.

Solution 1. [G. Ghosn] Since (1/y) = (x− z)/(xz) and gcd (x, x− z) = gcd (z, x− z) = 1, the fractions
on both sides of the equation are in lowest terms, and so x− z = 1 and xz = y. Hence x+ y = x(1+ z) = x2

and y − z = z(x− 1) = z2.

Solution 2. Since z(x + y) = xy and the greatest common divisor of x and z is 1, x, being a divisor of
z(x + y) must be a divisor of x + y and so of y. Let y = ux for some positive integer u. Then z(1 + u) = ux.
Since u and 1 + u have greatest common divisor 1, u must divide z and 1 + u must divide x, Hence z = uv
and x = (1 + u)w, for some positive integers v and w. Therefore uv(1 + u) = u(1 + u)w, whence v = w.

Therefore (x, y, z) = ((1 + u)v, u(1 + u)v, uv). Since x and z have greatest common divisor 1, v = 1 and
(x, y, z) = (1 + u, u(1 + u), u). This satisfies the given equation as well as x + y = (1 + u)2 = x2, x− z = 1
and y − z = u2 = z2. Particular examples are (x, y, z) = (2, 2, 1), (3, 6, 2), (4, 12, 3), (5, 20, 4).

Solution 3. We have that z(x + y) = xy and x(y − z) = yz. Since gcd (x, z) = 1, z and x both must
divide y, so that y = vz = wx for some positive integers v and w. Since z(1 + w)x = xvz, 1 + w = v and
gcd (v, w) = 1. Since wx = vz,,we must have that x = v and z = w and y = vw. This satisfies the equation
as well as x + y = v2, x− z = 1 and y − z = w2.

Solution 4. [K. Huynh] Observe that x > y and z > y. From the equation, we obtain that xz + yz = xy
whence (x − z)(y − z) = z2. Since gcd (x, z) = 1, there is no prime that divides x − z and z2, so that gcd
(x− z, z2) = 1. Therefore x− z = 1, y − z = z2, y = z2 + z and x + y = (z + 1)2.
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480. Let a and b be positive real numbers for which 60a = 3 and 60b = 5. Without the use of a calculator or
of logarithms, determine the value of

12
1−a−b
2(1−b) .

Solution 1. [V. Zhou]

12
1−a−b
2(1−b) =

(
60
5

) 1−a−b
2(1−b)

= 60(1−b)·( 1−a−b
2(1−b) )

=
(

60
60a+b

) 1
2

=
(

60
60a · 60b

) 1
2

=
(

60
3× 5

) 1
2

= 2 .

Solution 2. Since 60b = 5, 12b = 51−b and 5 = 12b/(1−b). Since 60a = 3, 225a12a = 12. Therefore

22 = 121−a5−a = 121−a12−ab/(1−b) = 12(1−a−b+ab−ab)/(1−b) = 12(1−a−b)/(1−b) .

Therefore 2 = 12(1−a−b)/2(1−b).

Solution 3. [A. Guo; D. Shi] Since a = log60 3 and b = log60 5,

1− (a + b) = 1− log60(15) = log60(60/15) = log60 4 .

Also, 1− b = 1− log60 5 = log60 12, so that

1− a− b

1− b
=

log60 4
log60 12

= log12 4 = 2 log12 2 .

Therefore
12

1−a−b
2(1−b) = 12log12 2 = 2 .

481. In a certain town of population 2n + 1, one knows those to whom one is known. For any set A of n
citizens, there is some person among the other n + 1 who knows everyone in A. Show that some citizen
of the town knows all the others.

Solution 1. [K. Huynh] We prove that there is a set of n + 1 people in the town, each of whom knows
(and is known by) each of the rest. First, observe that for any set of k people, with k ≤ n, there is a person
not among them who knows them all. This follows by augmenting the set to n people and applying the
condition of the problem.

Let p1 be any person. There is a person, say p2 who knows p1. A person p3 can be found who knows
both p1 and p2, so that {p1, p2, p3} is a triplet each of whom knows the other two. Suppose, as an induction
hypothesis, that 3 ≤ k ≤ n, and {p1, p2, · · · , pk} is a set of k people any pair of whom know each other. By
the foregoing observation, there is another person pk+1 who knows them all. By induction, we can find a set
{p1, p2, · · · , pn+1}, each pair of whom know each other.

Consider the remaining n people. There must be one among the pi who knows all of these remaining
people. This person pi therefore knows everyone.

Solution 2. Let us suppose that the persons are numbered from 0 to 2n inclusive. The notation
(a : a1, a2, · · · , ak) will mean that a is knows and is known by each of a1, a2, · · · , ak. Begin with the set
{1, 2, · · · , n}; some person, say 0, knows everyone in this set, so that

(0 : 1, 2, 3, · · · , n) .
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If person 0, knows everyone else, then we are done. Otherwise, there is a person, say, n + 1, not known to
0, so that everyone in the set {n + 1, n + 2, · · · , 2n}, is known by a person in the first set, say 1, so that

(1 : 0, n + 1, n + 2, · · · , 2n) .

Consider the set {0, 2, 3, · · · , n}. If 1 knows everyone in this set, then 1 knows everyone and we are done. If
1 does not know everyone in this set, then there is someone else, say n + 1, who does, so that

(n + 1 : 0, 1, · · · , n) and (0 : 1, 2, · · · , n + 1) .

If 0 knows everyone in the set {1, n + 2, · · · , 2n}, then 0 knows everyone; if n + 1 knows everyone in this
set, then n + 1 knows everyone, and we are done. If not, then there is a person 2, say, who knows everyone
in the set:

(2 : 0, 1, n + 1, n + 2, · · · , 2n) .

Consider the set {0, 3, · · · , n, n + 1}. If 1 or 2 knows everyone in this set, then 1 or 2 knows everybody and
we are done. Otherwise, there is a person, say n + 2 who knows everyone in the set, so that

(n + 2 : 0, 1, 2, · · · , n + 1) and (0 : 1, 2, · · · , n + 1, n + 2) .

We can continue on in this way either until we find someone that knows everyone, or until we reach the
ith stage for which

(i : 0, 1, 2, · · · , i− 1, n + 1, · · · , 2n) and (n + i : 0, 1, 2, · · · , n, n + 1, · · · , n + i− 1) .

If we get to the nth stage, then n and 2n each know everyone.

482. A trapezoid whose parallel sides have the lengths a and b is partitioned into two trapezoids of equal
area by a line segment of length c parallel to these sides. Determine c as a function of a and b.

Solution. Let u be the distance between the segment of length a and that of length c, and v the distance
between the segment of length c and that of length b. Then

u + v

u
=

b− a

c− a
.

From the area condition, we have that

2
(

c + a

2

)
u =

(
b + a

2

)
(u + v) =

(
b2 − a2

2(c− a)

)
u ,

whence 2(c2 − a2) = b2 − a2 and c2 = 1
2 (a2 + b2). Therefore

c =

√
a2 + b2

2
.

483. Let A and B be two points on the circumference of a circle, and E be the midpoint of arc AB (either
arc will do). Let P be any point on the minor arc EB and N the foot of the perpendicular from E to
AP . Prove that AN = NP + PB.

Solution 1. Produce ANP to M so that AN = NM . Then EM = AE = EB. Hence ∠EBM = ∠EMB,
so that

∠PBM = ∠EBM − ∠EBP = ∠EMB − ∠EAP = ∠EMB − ∠EMA = ∠PMB .
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Therefore PB = PM , so that

AN = NM = NP + PM = NP + PB .

Solution 2. [V. Zhou] Determine Q on AN so that AQ = BP . Then, also, ∠EAQ = ∠EAP = ∠EPB
and AE = EB, so that triangles AEQ and BEP are congruent. Hence EQ = EP and so QN = NP .
Therefore AN = QN + AQ = NP + PB.

Solution 3. [Y. Wang] Let O be the centre and r the radius of the circle. Let F and G be the respective
midpoints of AP and AB. Then FG‖BP and, since ∠AFO = ∠AGO = 90◦, the quadrilateral AFGO is
concyclic.

Let α = ∠AOF = ∠AGF and β = ∠AOE = ∠BOE. Then

∠PAB = ∠FAG = ∠FOG = ∠FOE = ∠NEO = β − α .

Also, |FN | = |OE| sin(β − α) = r sin(β − α) and |AF | = r sinα. By the Law of Sines applied to triangle
AFG,

|FG|
sin(β − α)

=
|AF |
sinα

= r,

whence |FG| = r sin(β − α) = |FN |. Hence AN = PF + FN = PN + 2FN = PN + 2FG = NP + PB.

484. ABC is a triangle with ∠A = 40◦ and ∠B = 60◦. Let D and E be respective points of AB and AC
for which ∠DCB = 70◦ and ∠EBC = 40◦. Furthermore, let F be the point of intersection of DC and
EB. Prove that AF ⊥ BC.

Solution 1. [J. Schneider] Let AH be the altitude from A to BC. We apply the converse of Ceva’s
Theorem in the trigonometric form to show that the cevians AH, BE and CD concur.

sin 30◦ sin 40◦ sin 10◦

sin 10◦ sin 20◦ sin 70◦
=

sin 30◦(2 sin 20◦ cos 20◦)
sin 20◦ cos 20◦

= 2 sin 30◦ = 1 .

Hence AH, BE and CD concur, so that AH passes through F and the result follows.

Solution 2. [A. Siddhour] In triangle BCF , since ∠CBF = 40◦ and ∠CBF = 40◦, it follows that
∠BFC = 70◦ = ∠CBF and BF = BC. Hence |BF | = a (using the standard convention for lengths of the
sides of the triangle ABC). Assign coordinates:

B ∼ (0, 0), C ∼ (a, 0), A ∼ (c cos 60◦, c sin 60◦), F ∼ (a cos 40◦, a sin 40◦ .

By the Law of sines, we have that c sin 40◦ = a sin 80◦, whence c = 2a cos 40◦.

We have that
−→
FA · −−→BC = (c cos 60◦ − a cos 40◦, c sin 60◦ − a sin 60◦) · (a, 0)

= a(2a cos 40◦ cos 60◦ − a cos 40◦ = a cos 40◦ − a cos 40◦ = 0 ,

from which it follows that AF ⊥ BC.

Solution 3. [Y. Wang] The result will follow if one can show that ∠FAC = 10◦. Since ∠FCA =
∠BCA−∠DCB = 80◦ − 70◦ = 10◦, it is enough to show that the perpendicular from F to AC bisects AC,
i.e., 2|CF | cos ∠FCA = |AC|.

Since ∠FBC = 40◦ and ∠BCF = 70◦, it follows that ∠BFC = 70◦ so that |CF | = 2|BC| cos 70◦.
Since BC : AC = sin∠BAC : sin∠ABC = sin 40◦ : sin 60◦,

2|CF | cos ∠FCA = 4|BC| cos 70◦ cos 10◦ = 4|AC| sin 40◦ sin 20◦ sin 80◦/ sin 60◦ .
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For each angle θ,

4 sin θ sin(60◦ + θ) sin(60◦ − θ) = 2 sin θ[cos 2θ − cos 120◦]
= 2 sin θ cos 2θ + 2 sin θ sin 30◦

= sin 3θ − sin θ + sin θ = sin 3θ .

When θ = 20◦, this becomes 4 sin 20◦ sin 40◦ sin 80◦ = sin 60◦. so that 2|CF | cos ∠FCA = |AC|, as desired.

Solution 4. Since ∠BFC = 70◦ = ∠BCD, BF = BC. Let |BF | = |BC| = 1, |AF | = u and |CF | = v.
Let ∠BAF = θ, so that ∠CAF = 40◦ − θ. By the Sine law applied to triangles BFC and AFC,

sin 40◦

sin 70◦
= v =

u sin(40◦ − θ)
sin 10◦

.

By the Sine Law applied to triangle ABF, u = sin 20◦/ sin θ. Hence

sin 40◦

sin 70◦
=

sin 20◦ sin(40◦ − θ)
sin 10◦ sin θ

,

so that
sin 10◦ sin 40◦ sin θ = sin 20◦ cos 20◦ sin(40◦ − θ) ,

whence
2 sin 10◦ sin θ = sin(40◦ − θ) = sin 40◦ cos θ − cos 40◦ sin θ

and
sin θ(2 sin 10◦ + cos 40◦) = cos θ sin 40◦ .

Now
2 sin 10◦ + cos 40◦ = sin 10◦ + (sin 10◦ + sin 50◦)

= sin 10◦ + 2 sin 30◦ cos 20◦ = sin 10◦ + sin 70◦

= 2 sin 40◦ cos 30◦ =
√

3 sin 40◦ .

Hence
√

3 sin θ = cos θ, so that cot θ =
√

3. Hence θ = 30◦ and the result follows.

Solution 5. [K. Huynh] Let a, b, c be the sides of triangle ABC according to convention. Since ∠BFC =
∠FCB = 70◦, |BF | = |BC| = a. Let the respective feet of the perpendiculars from A and F to BC be P
and Q. Then |BP | = c cos 60◦ = c/2 and |BQ| = a cos 40◦. From the Law of Sines, a sin 80◦ = c sin 40◦, so
that c = 2a cos 40◦. Hence BP = BQ, and the result follows.

Solution 6. [G. Ghosn] Applying the Law of Sines to triangles BCE and BEA using their common side
BE, we obtain that

|EC|
|EA|

=
(

sin 40◦

sin 80◦

)(
sin 40◦

sin 20◦

)
=

sin2 40◦

sin 20◦ sin 80◦
=

2 cos 20◦ sin 40◦

sin 80◦
.

Similarly,
|DA|
|DB|

=
sin 10◦ sin 60◦

sin 40◦ sin 70◦
.

By Ceva’s therem

1 =
|EC|
|EA|

|DA|
|DB|

|MB|
|MC|

=
2 cos 20◦ sin 40◦ sin 10◦ sin 60◦

sin 80◦ sin 40◦ sin 70◦
|MB|
|MC|

=
2cos 80◦ sin 60◦

sin 80◦
|MB|
|MC|

,
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whence we find that |MB| : |MC| = tan 80◦ : tan 60◦.

Let AN be an altitude of triangle ABC, so that |AN | = |NB| tan 60◦ = |CN | tan 80◦. Then MB :
MC = NB : NC, so that M = N and the desired result follows.

485. From the foot of each altitude of the triangle, perpendiculars are dropped to the other two sides. Prove
that the six feet of these perpendiculars lie on a circle.

Solution 1. Let ABC be the triangle with altitudes AP , BQ and CR; let H be the orthocentre. Let
PU ⊥ AB, QV ⊥ BC, RW ⊥ CA, PX ⊥ CA, QY ⊥ AB and RZ ⊥ BC, where U, Y ∈ AB; V,Z ∈ BC;
and W,X ∈ CA.

Consider triangles AQR and ABC. Since ARHQ is concyclic (right angles at Q and R),

∠ARQ = ∠AHQ = ∠BHP = 90◦ − ∠HBP = 90◦ − ∠QBC = ∠ACB .

Similarly, ∠AQR = ∠ABC. Thus, triangles AQR and ABC are similar, the similarity being implemented
by a dilatation of centre A followed by a reflection about the bisector of angle BAC. Since QY and RW
are altitudes of triangle AQR, triangle AY W is formed from triangle AQR as triangle AQR is formed from
triangle ABC. Hence triangles AY W and AQR are similar by the combination of a dilatation with centre
A and a reflection about the bisector of angle BAC.

Therefore, triangle AY W and ABC are directly similar and Y W‖BC. Similarly triangles BZU and
BCA as well as triangles CXV and CAB are similar and ZU‖CA and XV ‖AB. (We note that this means
that XWY UZV is a hexagon with opposite sides parallel, although this is not needed here.)

Since PX‖HQ and PU‖HR, AU : AR = AP : AH = AX : AQ, so that there is a dilatation taking
U → R, P → H and X → Q. Therefore UX‖RQ and triangle AXU is similar to triangle AQR and to
triangle ABC.

Consider quadrilateral UZV X.

∠UZV + ∠UXV = (180◦ − ∠BZU) + (180◦ − ∠AXU − ∠CXV )
= (180◦ − ∠ACB) + (180◦ − ∠ABC − ∠BAC) = 180◦ .

Hence UZV X is concyclic. Similarly, V XWY and WY UZ are concyclic.

Since triangles AY W and AXU are similar with ∠AWY = ∠AUX and ∠AY W = ∠AXU , XWY U is
concyclic. Similarly, Y UZV and ZV XW are concylclic. Hence XWY UZV is a hexagon, any consecutive
four vertices of which are concylcic, and so is itself concyclic.

Solution 2. [K. Huynh] Let a, b, c be the lengths of the sides and A, B, C the angles of the triangle ABC
according to convention. Use the notation of Solution 1. We have that |BU | = |BP | cos B = (c cos B) cos B =
c cos2 B. Similarly, |BZ| = a cos2 B, |AY | = c cos2 A and |CV | = a cos2 C. Therefore, |BY | = c(1−cos2 A) =
c sin2 A and |CV | = a(1− cos2 C) = a sin2 C.

Since a sinC = c sinA,

|BU ||BY | = (c cos2 B)(a sin2 A) = cos2 B(c sinA)2

= cos2 B(a sinC)2 = (a cos2 B)(a sin2 C) = |BZ||BV | .

from which, by a power-of-the-point argument [give details!], we deduce that Y UZV is concyclic. Similarly,
ZV XW and XWY U are concyclic.

Suppose that the circumcircle of Y UZV intersects AZ at L and the circumcircle of ZV XW intersects
AZ at M . Since XWY U is concyclic, |AY ||AU | = |AW ||AX|. Therefore,

|AL||AZ| = |AY ||AU | = |AW ||AX| = |AM ||AZ| .

Hence L = M . Thus, the circumcircles of Y UZV and ZV XW share three noncollinear points, Z, V and
L = M , and so must coincide. Similarly, each coincides with the circumcircle of XWY U and the result
follows.
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