
PUTNAM PROBLEMS

NUMBER THEORY

2018-A-1. Find all ordered pairs (a, b) of positive integers for which

1

a
+

1

b
=

3

2018
.

2018-B-3. Find all positive integers n < 10100 for which simultaneously n divides 2n, n − 1 divides
2n − 1, and n− 2 divides 2n − 2.

2018-B-6. Let S be the set of sequences of length 2018 whose terms are in the set {1, 2, 3, 4, 5, 6, 10}
and sum to 3860. Prove that the cardinality of S is at most

23860 ·
(

2018

2048

)2018

.

2017-A-1. Let S be the smallest set of positive integers such that

(a) 2 is in S;

(b) n is in S whenever n2 is in S;

(c) (n+ 5)2 is in S whenever n is in S.

What positive integers are not in S?

2017-A-4. A class with 2N students took a quiz, on which the possible scores were 0, 1, . . . , 10. Each
of these scores occurred at least once, and the average score was exactly 7.4. Show that the class can be
divided into two groups of N students in such a way that the average score for each group was exactly 7.4.

2017-B-2. Suppose that a positive integer N can be expressed as the sum of k consecutive positive
integers

N = a+ (a+ 1) + (a+ 2) + · · ·+ (a+ k − 1)

for k = 2017 but for no other values of k > 1, Considering all positive integers N with this property, what
is the smallest positive integer a that occurs in any of these expressions?

2017-B-6. Find the number of ordered 64−tuples (x0, x1, . . . , x63) such that x0, x1, . . . , x63 are distinct
elements of {1, 2, . . . , 2017} and

x0 + x1 + 2x2 + 3x3 + · · ·+ 63x63

is divisible by 2017.

2016-A-1. Find the smallest positive integer j such that for every polynomial p(x) with integer coeffi-
cients and for every integer k, the integer

p(j)(k) =
dj

dxj
p(x)|x=k

(the j-th derivative of p(x) at k) is divisible by 2016.

2016-B-2. Define a positive integer n to be squarish if either n is itself a perfect square or the distance
from n to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest
perfect square to 2016 is 452 = 2025 and 2025 − 2016 = 9 is a perfect square. (Of the positive integers
between 1 and 10, only 6 and 7 are not squarish.)

1



For a positive integer N , let S(N) be the number of squarish integers between 1 and N , inclusive. Find
positive constants α and β such that

lim
N→∞

S(N)

Nα
= β,

or show that no such constants exist.

2015-A-2. Let a0 = 1, a1 = 2, and

an = 4an−1 − an−2

for n ≥ 2. Find an odd prime factor of a2015.

2015-A-5. Let q be an odd positive integer, and let Nq denote the number of integers a such that
0 < a < q/4 and gcd(a, q) = 1. Show that Nq is odd if and only if q is of the form pk with k a positive
integer and p a prime congruent to 5 or 7 modulo 8.

2015-B-2. Given a list of the positive integers 1, 2, 3, 4, . . ., take the first three numbers 1, 2, 3 and
their sum 6 and cross all four numbers off the list. Repeat with the three smallest remaining numbers 4, 5,
7 and their sum 16. Continue in this way, crossing off the three smallest remaining numbers and their sum,
and consider the sequence of sums produced 6, 16, 27, 36, . . .. Prove or disprove that there is some number
in this sequence whose base 10 representation ends with 2015.

2015-B-4. Let T be the set of all triples (a, b, c) of positive integers for which there exist triangles with
side lengths a, b, c. Express ∑

(a,b,c)∈T

2a

3b5c

as a rational number in lowest terms.

2015-B-6. For each positive integer k, let A(k) be the number of odd divisors of k in the interval
[1,
√

2k). Evaluate
∞∑
k=1

(−1)k−1
A(k)

k
.

2014-B-1. A base 10 over-expansion of a positive integer N is an expression of the form

N = dk10k + dk−110k−1 + · · ·+ d0100

with dk 6= 0 and di ∈ {0, 1, 2, . . . , 10} for all i. For instance, the integer N = 10 has two base 10 over-
expansions: 10 = 10 · 100 amd the usual base 10 expansion 10 = 1 · 101 + 0 · 100. Which positive integers
have a unique base 10 over-expansion?

2014-B-3. Let A be an m × n matrix with rational entries. Suppose that there are at least m + n
distinct prime numbers among the absolute values of the entries of A. Show that the rank of A is at least 2.

2013-A-2. Let S be the set of all positive integers that are not perfect squares. For n in S, consider
choices of integers a1, a2, . . . , ar such that n < a1 < a2 < · · · < ar and n · a1 · a2 · · · ar is a perfect square,
and let f(n) be the minimum of ar over all such choices. For example, 2 · 3 · 6 is a perfect square, while 2 · 3,
2 · 4, 2 · 5, 2 · 3 · 4, 2 · 3 · 5, 2 · 4 · 5, and 2 · 3 · 4 · 5 are not, and so f(2) = 6. Show that the function f from S
onto the integers is one-one.

2012-A-4. Let q and r be integers with q > 0, and let A and B be intervals on the real line. Let T be
the set of all b+mq where b and m are integers with b in B, and let S be the set of all integers a in A such
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that ra is in T . Show that if the product of the lengths of A and B is less than q, then S is the intersection
of A with some arithmetic progression.

2012-A-5. Let Fp denote the field of integers modulo a prime p, and let n be a positive integer. Let
v be a field vector in Fnp and let M be an n × n matrix with entries in Fp, and define G : Fnp → Fnp by

G(x) = v + Mx. Let G(k) denote the k−fold composition of G with itself, that is G(1)(x) = G(x) and
G(k+1)(x) = G(G(k)(x)). Determine all pairs p, n for which there exist v and M such that the pn vectors
G(k)(0), k = 1, 2, · · · , pn are distinct.

2012-B-6. Let p be an odd prime such that p ≡ 2 (mod 3). Define a permutation π of the residue
classes modulo p by π(x) ≡ x3 (mod p). Show that π is an even permutation if and only if p ≡ 3 (mod 4).

2011-A-4. For which positive integers n is there an n× n matrix with integer entries such that every
dot product of a row with itself is even, while every dot product of two different rows is odd?

2011-B-1. Let h and k be positive integers. Prove that for every ε > 0, there are positive integers m
and n such that

ε < |h
√
m− k

√
n| < 2ε.

2011-B-2. Let S be the set of ordered triples (p, q, r) of prime numbers for which at least one rational
number x satisfies px2 + qx+ r = 0. Which primes appear in seven or more elements of S?

2011-B-6. Let p be an odd prime. Show that for at least (p+ 1)/2 values of n in {0, 1, 2, · · · , p− 1},

p−1∑
k=0

k!nk is not divisible by p.

2010-A-1. Given a positive integer n, what is the largest k such that the numbers 1, 2, . . . , n can be
put into k boxes so that the sum of the numbers in each box is the same. [When n = 8, the example
{1, 2, 3, 6}, {4, 8}, {5, 7} shows that the largest k is at least 3.

2010-A-4. Prove that for each positive integer n, the number

1010
10n

+ 1010
n

+ 10n − 1

is not prime.

2009-A-4. Let S be a set of rational numbers such that

(a) ) ∈ S;

(b) If x ∈ S, then x+ 1 ∈ S and x− 1 ∈ S; and

(c) If x ∈ S and x 6∈ (0, 1), then 1/(x(x− 1) ∈ S.

Must S contain all rational numbers?

2009-B-1. Show that every positive rational number can be written as a quotient of products of fctorials
of (not necessarily distinct) primes. For example,

10

9
=

2! · 5!

3! · 3! · 3!
.

2009-B-3. Call a subset S of {1, 2, . . . , n} mediocre if it has the following property: Whenever a and b
are elements of S whose average is an integer, that average is also an element of S. Let A(n) be the number
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of mediocre subsets of {1, 2, . . . , n}. [For instance, every subset of {1, 2, 3} except {1, 3} is mediocre, so
A(3) = 7.] Find all positive integers n such that A(n+ 2)− 2A(n+ 1) +A(n) = 1.

2009-B-6. Prove that for every positive integer n, there is a sequence of integers a0, a1, . . . , a2009 with
a0 = 0 and a2009 = n such that each term after a0 is either an earlier term plus 2k for some nonnegative
integer k, or of the form b mod c for some earlier terms b and c. [Here bmodc denotes the remainder when b
is divided by c, so 0 ≤ (bmodc) < c.

2008-A-3. Start with a finite sequence a1, a2, . . . , an of integers . If possible, choose two indices j < k
such that aj does not divide ak, and replace aj and ak by gcd(ai, aj) and lcm(aj , ak) respectively. Prove
that if this process is repeated, it must eventually stop and the final sequence does not depend on the choices
made. (Note: gcd means greatest common divisor and lcm means least common multiple.)

2008-B-4. Let p be a prime number. Let h(x) be a polynomial with integer coefficients such that h(0),
h(1), . . . , h(p2 − 1) are distinct modulo p2. Show that h(0), h(1), . . . , h(p3 − 1) are distinct modulo p3.

2007-A-4. A repunit is a positive integer whose digits in base 10 are all ones. Find all polynomials f
with real coefficients such that if n is a repunit, then so is f(n).

2007-B-1. Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer,
then f(n) divides f(f(n) + 1) if and only if n = 1.

2006-A-3. Let 1, 2, 3, · · · , 2005, 2006, 2007, 2009, 2012, 2016, · · · be a sequence defined by xk = k for
k = 1, 2, · · · , 2006 and xk+1 = xk+xk−2005 for k ≥ 2006. Show that the sequence has 2005 consecutive terms
each divisible by 2006.

2005-A-1. Show that every positive integer is a sum of one or more numbers of the form 2r3s, where
r and s are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)

2005-B-2. Find all positive integers n, k1, k2, · · · , kn such that k1 + k2 + · · ·+ kn = 5n− 4 and

1

k1
+ · · ·+ 1

kn
= 1 .

2005-B-4. For positive integers m and n, let f(m,n) denote the number of n−tuples (x1, x2, · · · , xn)
of integers such that |x1|+ |x2|+ · · ·+ |xn| ≤ m. Show that f(m,n) = f(n,m).

2004-A-1. Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(N), of
successful free throws she has made in her first N attempts of the season. Early in the season, S(N) as
less than 80% of N , but by the end of the season, S(N) was more than 80% of N . Was there necessarily a
moment in between when S(N) was exactly 80% of N?

2004-A-3. Define a sequence {un}∞n=0 by u0 = u1 = u2 = 1, and thereafter by the condition that

det

(
un un+1

un+2 un+3

)
= n!

for all n ≥ 0. Show that un is an integer for all n. (By convention, 0! = 1.)

2004-B-2. Let m and n be positive integers. Show that

(m+ n)!

(m+ n)m+n
<

m!

mm
· n!

nn
.
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2004-B-6. Let A be a non-empty set of positive integers, and let N(x) denote the number of elements
of A not exceeding x. Let B denote the set of positive integers b that can be written in the form b = a− a′
with a ∈ A and a′ ∈ A. Let b1 < b2 < · · · be the members of B, listed in increasing order. Show that if the
sequence bi+1 − bi is unbounded, then limx→∞N(x)/x = 0.

2003-A-1. Let n be a fixed positive integer. How many ways are there to write n as a sum of positive
integers,

n = a1 + a2 + · · ·+ ak ,

with k an arbitrary positive integer, and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1? For example, with n = 4, there are
four ways: 4, 2+2, 1+1+2, 1+1+1+1.

2003-A-6. For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2)
such that s1 ∈ S, s2 ∈ S, s1 6= s2, and s1 + s2 = n. Is it possible to partition the nonnegative integers into
two sets A and B in such a way that rA(n) = rB(n) for all n?

2003-B-2. Let n be a positive integer. Starting with the sequence 1, 12 ,
1
3 , · · · ,

1
n , for a new sequence

of n − 1 entries 3
4 ,

5
12 , · · · ,

2n−1
2n(n−1) , by taking the averages of two consecutive entries in the first sequence.

Repeat the averaging of neighbours on the second sequence to obtain a sequence of n−2 entries and continue
until the final sequence consists of a single number xn. Show that xn < 2/n.

2003-B-3. Show that for each positive integer n,

n! =

n∏
i=1

lcm{1, 2, · · · , bn/ic} .

(Here lcm denotes the least common multiple, and bxc denotes the greatest integer ≤ x.)

2003-B-4. Let f(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4) where a, b, c, d, e are
integers, a 6= 0. Show that if r1 + r2 is a rational number, and if r1 + r2 6= r3 + r4, then r1r2 is a rational
number.

2002-A-3. Let n ≥ 2 be an integer and Tn be the number of non-empty subsets S of {1, 2, 3, · · · , n}
with the property that the average of the elements of S is an integer. Prove that Tn − n is always even.

2002-A-5. Define a sequence by a0 = 1, together with the rules a2n+1 = an and a2n+2 = an + an+1 for
each integer n ≥ 0. Prove that every positive rational number appears in the set{

an−1
an

: n ≥ 1

}
=

{
1

1
,

1

2
,

2

1
,

1

3
,

3

2
, · · ·

}
.

2002-A-6. Fix an integer b ≥ 2. Let f(1) = 1, and f(2) = 2, and for each n ≥ 3, define f(n) = nf(d),
where d is the number of base−b digits of n. For which values of b does

∞∑
n=1

1

f(n)

converge?

2002-B-5. A palindrome in base b is a positive integer whose base−b digits read the same forwards
and backward; for example, 2002 is a 4-digits palindrome in base 10. Note that 200 is not a palindrome in
base 10, but it is the 3-digit palindrome 242 in base 9, and 404 in base 7. Prove that there is an integer
which is a 3-digit palindrome in base b for at least 2002 different values of b.
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2001-A-5. Prove that there are unique positive integers a, n such that

an+1 − (a+ 1)n = 2001 .

2001-B-1. Let n be an even positive integer. Write the numbers 1, 2, · · · , n2 in the squares of an n× n
grid so that the kth row, from right to left is

(k − 1)n+ 1, (k − 1)n+ 2, · · · , (k − 1)n+ n .

Colour the squares of the grid so that half the squares in each row and in each column are red and the other
half are black (a checkerboard colouring is one possibility). Prove that for each such colouring, the sum of
the numbers on the red squares is equal to the sum of the numbers in the black square.

2001-B-3. For any positive integer n let 〈n〉 denote the closest integer to
√
n. Evaluate

∞∑
n=1

2〈n〉 + 2−〈n〉

2n
.

2001-B-4. Let S denote the set of rational numbers different from −1, 0 and 1. Define f : S → S by
f(x) = x− (1/x). Prove or disprove that

∞⋂
n=1

f (n)(S) = ∅ ,

where f (n) = f ◦ f ◦ · · · ◦ f (n times). (Note: f(S) denotes the set of all values f(s) for s ∈ S,)

2000-A-2. Prove that there exist infinitely many integers n such that n, n+ 1, and n+ 2 are each the
sum of two squares of integers. (Example: 0 = 02 + 02, 1 = 02 + 12, and 2 = 12 + 12.)

2000-B-1. Let aj , bj , and cj be integers for 1 ≤ j ≤ N . Assume, for each j, that at least one of aj , bj ,
cj is odd. Show that there exist integers r, s, t such that raj + sbj + tcj is odd for at least 4N/7 values of j,
1 ≤ j ≤ N .

2000-B-2. Prove that the expression

gcd (m,n)

n

(
n

m

)
is an integer for all pairs of integers n ≥ m ≥ 1. [Here

(
n
m

)
= n!

m!(n−m)! and gcd (m,n) is the greatest common

divisor of m and n.]

2000-B-5. Let S0 be a finite set of positive integers. We define sets S1, S2, · · · of positive integers as
follows:

Integer a is in Sn+1 if and only if exactly one of a− 1 or a is in Sn.

Show that there exists infinitely many integers N for which

SN = S0 ∪ {N + a : a ∈ S0} .

1999-A-6. The sequence {an}n≥1 is defined by a1 = 1, a2 = 2, a3 = 24, and for n ≥ 4,

an =
6a2n−1an−3 − 8an−1a

2
n−2

an−2an−3
.
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Show that, for all n, an is an integer multiple of n.

1999-B-6. Let S be a finite set of integers, each greater than 1. Suppose that for each integer n there
is some s ∈ S such that gcd (s, n) = 1 or gcd (s, n) = s. Show that there exists s, t ∈ S such that gcd (s, t)
is prime. [Here gcd (a, b) denotes the greatest common divisor of a and b.]

1998-A-4. Let A1 = 0 and A2 = 1. For n > 2, the number An is defined by concatenating the
decimal expansions of An−1 and An−2 from left to right. For example, A3 = A2A1 = 10, A4 = A3A2 = 101,
A5 = A4A3 = 10110, and so forth. Determine all n such that 11 divides An.

1998-B-5. Let N be the positive integer with 1998 decimal digits, all of them 1; that is, N = 1111 · · · 11
(1998 digits). Find the thousandth digit after the decomal point of

√
N .

1998-B-6. Prove that, for any integers a, b, c, there exists a positive integer n such that
√
n3 + an2 + bn+ c

is not an integer.

1997-A-5. Let Nn denote the number of ordered n−tuples of positive integers (a1, a2, · · · , an) such
that 1/a1 + 1/a2 + · · ·+ 1/an = 1. Determine whether N10 is even or odd.

1997-B-3. For each positive integer n write the sum
∑n
m=1

1
m in the form pn

qn
where pn and qn are

relatively prime positive integers. Determine all n such that 5 does not divide qn.

1997-B-5. Prove that for n ≥ 2,

22
···2
}
n ≡ 22

···2
}
n− 1 (mod n) .

1996-A-5. If p is a prime number greater than 3, and k = b2p/3c, prove that the sum(
p

1

)
+

(
p

2

)
+ · · ·+

(
p

k

)
of binomial coefficients is divisible by p2.
(For example,

(
7
1

)
+
(
7
2

)
+
(
7
3

)
+
(
7
4

)
= 7 + 21 + 35 + 35 = 2 · 72 .)

1995-A-3. The number d1d2 · · · d9 has nine (not necessarily distinct) decimal digits. The number
e1e2 · · · e9 is such that each of the nine 9-digit numbers formed by replacing just one of the digits di in
d1d2 · · · d9 by the corresponding digit ei (1 ≤ i ≤ 9) is divisible by 7. The number f1f2 · · · f9 is related
to e1e2 · · · e9 in the same way; that is, each of the nine numbers formed by replacing one of the ei by
the corresponding fi is divisible by 7. Show that, for each i, di − fi is divisible by 7. [For example, if
d1d2 · · · d9 = 199501996, then e6 may be 2 or 9, since 199502996 and 199509996 are multiples of 7.]

1995-A-4. Suppose we have a necklace of n beads. Each bead is labelled with an integer and the sum
of all these labels is n− 1. Prove that we can cut the necklace to form a string whose consecutive labels x1,
x2, · · ·, xn satisfy

k∑
i=1

xi ≤ k − 1 for k = 1, 2, · · ·n .

1994-B-1. Find all positive integers that are within 250 of exactly 15 perfect squares. (Note: A perfect
square is the square of an integer; that is, a member of the set {0, 1, 4, 9, 16, · · · , }. a is within n of b if
b− n ≤ a ≤ b+ n.)

1994-B-6. For any integer a, set na = 101a− 100 · 2a. Show that for 0 ≤ a, b, c, d ≤ 99,

n2 + nb ≡ nc + nd (mod10100)
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implies {a, b} = {c, d}.

1993-A-4. Let x1, x2, · · · , x19 be positive integers each of which is less than or equal to 93. Let
y1, y2, · · · , y93 be positive integers each of which is less than or equal to 19. Prove that there exists a
(nonempty) sum of some xi’s equal to a sum of some yj ’s.

1993-B-1. Find the smallest positive integer n such that for every integer m, with 0 < m < 1993, there
exists an integer k for which

m

1993
<
k

n
<
m+ 1

1994
.

1993-B-5. Show there do not exist four points in the Euclidean plane such that the pairwise distances
between the points are all odd integers.

1993-B-6. Let S be a set of three, not necessarily distinct, positive integers. Show that one can
transform S into a set containing 0 by a finite number of applications of the following rule: Select two of the
three integers, say x and y, where x ≤ y, and replace them with 2x and y − x.

1992-A-3. For a given positive integer m, find all triples (n, x, y) of positive integers, with n relatively
prime to m, which satisfy (x2 + y2)m = (xy)n.

1992-A-5. For each positive integer n, let

an =

{
0 if the number of 1’s in the binary representation of n is even,
1 if the number of 1’s in the binary representation of n is odd.

Show that there do not exist positive integers k and m such that

ak+j = ak+m+j = ak+2m+j , for 0 ≤ j ≤ m− 1 .

1989-A-1. How many primes among the positive integers, written as usual in base 10, are such that
their digits are alternating 1’s and 0’s, beginning and ending with 1?

1988-B-1. A composite (positive integer) is a product ab with a and b not necessarily distinct integers
in {2, 3, 4, · · ·}. Show that every composite is expressible as xy + xz + yz + 1, with x, y, and z positive
integers.

1988-B-6. Prove that there exist an infinite number of ordered pairs (a, b) of integers such that for
every positive integer t the number at+ b is a triangular number if and only if t is a triangular number. (The
triangular numbers are the tn = n(n+ 1)/2 with n in {0, 1, 2, · · ·}.

1987-A-2. The sequence of digits

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 · · ·

is obtained by writing the positive integers in order. If the 10n-th digit in this sequence occurs in the part of
the sequence in hich the m−digit numbers are placed, define f(n) to be m. For example f(2) = 2 because
the 100th digit enters the sequence in the placement of the two digit integer 55. Find, with proof, f(1987).

1981-A-1. Let E(n) denote the largest integer k such that 5k is an integer divisor of the product
112233 · · ·nn. Calculate

lim
n→∞

E(n)

n2
.

1981-B-3. Prove that there are infinitely many positive integers n with the property that if p is a prime
divisor of n2 + 3 then p is also a divisor of k2 + 3 for some integer k with k2 < n.

8



1981-B-5. Let B(n) be the number of ones in the base two expression for the positive integer n. For
example, B(6) = B(1102) = 2 and B(15) = B(11115) = 4. Determine whether or not

exp

( ∞∑
n=1

B(n)

n(n+ 1)

)

is a rational number. Here exp(x) denotes ex.

1980-A-2. Let r and s be positive integers. Derive a formula for the number of ordered quadruples
(a, b, c, d) of positive integers such that

3r · 7s = lcm[a, b, c] = lcm[a, b, d] = lcm[a, c, d] = lcm[b, c, d].

1972-A-5. Show that if n is a positive integer greater than 1, then n does not divide 2n − 1.

1971-A-5. A game of solitaire is played as follows. After each play, according to the outcome, the player
receives either a or b points (a and b are positive integers with a greater than b), and his score accumulates
from play to play. It has been noticed that there are thirty-five non-attainable scores and that one of these
is 58. Find a and b.

1971-A-6. Let c be a real number such that nc is an integer for every positive integer n. Show that c
is a nonnegative integer.

1971-B-6. Let δ(x) be the greatest odd divisor of the positive integer x. Show that, for all positive
integers x, ∣∣∣∣∣

x∑
n=1

δ(n)

n
− 2x

3

∣∣∣∣∣ < 1.

1970-A-3. Find the length of the longest sequence of equal non-zero digits in which an integral square
can terminate (in base 10) and find the smallest square which terminates in such a sequence.

1966-B-2. Prove that among any ten consecutive integers at least one is relatively prime to each of
the others.

1966-B-4. Let 0 < a1 < a2 < . . . < amn+1 be mn+ 1 integers. Prove that you can select either m+ 1
of them no one of which divides any other, or n+ 1 of them each dividing the following one.
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