COMPOSITION OF LINEAR POLYNOMIALS

EDWARD J. BARBEAU

ABSTRACT. In order for students of science, technology, engineering and math-
ematics to have a proper algebraic foundation, the secondary curriculum must
go beyond memorizing results and technicalities. Algebra is a powerful tool
that can be wielded only if its user has a sophisticated appreciation of its
value as a language, its structure and its role in proving results. In this paper,
we look at an example that is accessible to material in the early high school
syllabus in which students are encouraged to deepen their grasp of the subject.

1. INTRODUCTION

Algebra is the core of the secondary syllabus, both for every educated citizen and
for those who need a solid preparation in mathematics for study or employment.
Students, particular those headed for a STEM program in university or college,
need to appreciate the role of algebraic notation and process as a language for
expressing relationships, as a tool for setting up and solving equations and as a
powerful means of disposing of a broad range of problems.

STEM students require not only a broader and more technical syllabus, but
tasks that shed varied light on the concepts and practices of algebra. There are
many subtle distinctions that can only be understood by exposing them to a range
of examples that bring out salient features. A helpful viewpoint is to regard an
algebraic expression as a bearer of information, of which some mathematical facts
can be easily read off and some are latent. Technical manipulation of an algebraic
expression changes its form so that the particular information needed is readily
visible.

In order for this side of algebra to be real for students, it should be presented in a
context that means something to them. As argued in earlier chapters, this context
might relate to their life and experience. But it can be purely mathematical, if
it has its own coherence and is attractive on its own terms. At the secondary
level, it is not easy to find applications that are both accessible and deal with
aspects of mathematical usage and analysis that students should be exposed to.
One might hope that courses like physics, chemistry and geography are sufficiently
mathematical as to fulfil some of this necessity.

However, it is in mathematics courses themselves that one should develop skills
of investigation, analysis and reasoning. STEM students in particular need to be
attuned to the subtleties of notation, usage and reasoning that will make them
confident and competent users of the discipline. Accordingly, in following the syl-
labus, one should avoid the sense of just doing one topic after another, and build
in questions to be answered and goals to be reached. The example in this paper
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is purely mathematical, and builds on one of the very first topics in the secondary
syllabus, namely the study of linear functions and equations.

A linear function has the form f(xz) = axz + b, where a and b are constants.
Students can be asked to create and then evaluate their own linear functions at
different values of x. It is helpful to think of a linear function as a transformation,
r — ax+b, that takes the real number line to itself. It then becomes natural to ask
whether any number x is taken to itself under this transformation. This involves
finding the values of = to satisfy the linear equation

ar+b=ux.

Such a value is said to be a fized point for f. This can be investigated using
numerical values of ¢ and b as well as by sketching the graph of the equation
y = f(z) and seeing if and where it intersects the graph of the equation y = z.

The important intellectual step here is to now think of a and b, as parameters
that stand in for the numerical coefficients, and to express the fixed point in terms
of these parameters. It turns out that there are essentially three situations. If
a = 1,b = 0, then every point is fixed. If a = 1,b # 0, then there are no fixed
points. This can be seen geometrically since the mapping x — x + b represents
a translation of the line by a nonzero quantity. Finally, whenever a # 1, there is
exactly one fixed point.

We now bring in a second strand that will be related to what we have just
discussed. If we introduce a second linear function, g(z) = cx + d, then we can
evaluate one of the two functions at a particular point and then evaluate the second
at the result of the first evaluation. In mathematical terms, we consider f(g(x))
and g(f(x)), the compositions of the two functions.

A natural question is whether the order of composing the functions makes a
difference to the final result. Students can once again investigate particular cases
and perhaps be led to some tentative hypotheses. At the end, we can treat a, b, c,d
as parameters and set up and solve the linear equation f(g(x)) = g(f(z)).

The idea of composition should not be completely new to the student, expecially
if we regard a linear polynomial as implementing a transformation of the real line.
Some students will have studied geometrical transformations such as reflections,
rotations, translations and dilatations in elementary school and already experienced
situations in which the transformation do not commute under composition. Indeed,
we can describe z — ax + b as a dilatation with factor a followed by a translation
by distance |b| to the right or left depending on sign.

Despite the attractiveness of this topic, it does not appear to have received much
attention in the educational literature. The references include two articles in the
National Council of Teachers journal, The Mathematics Teacher, and one a quarter
century ago in an expository mathematics journal.

Before discussing pedagogical issues any further, I will devote a section just to
the presentation of the mathematics. The reader is invited to work through the
material and consider how it might be framed for a secondary class. In any situation
where an extra topic is introduced, there is a trade-off to be made. The first reaction
might be that it is quite enough to get through the prescribed curriculum without
introducing any side issues. On the other hand, one should always ask whether
there is any value added by having students go through a mathematical experience
that may improve their skills and insights to the extent that later topics can be
handled more expeditiously.
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2. COMMUTING LINEAR FUNCTIONS: THE MATHEMATICAL ISSUES.

Suppose that we have two linear polynomials, say f(x) = 3z—2 and g(z) = 2z+5.
We can compose them in two ways to form two new functions: fog(x) = f(g(z)) =
3(2e+5)—2=6x+13 and go f(x) = g(f(z)) =283z —2)+5 =62 +1. Asyou can
see, the order of composing makes a difference to the result. Is it possible to find
linear functions for which the result of the two options is the same? In other words,
under what conditions do two linear polynomials commute under composition?

Investigation of this question leads us to distinguish two separate roles for letters
in algebra, that of parameters that play the role of constants and represent for
example numerical coefficients, and that of variables which represent values in the
domain of some function or expression and allow us to link numbers in the domain
and range.

To deal with linear polynomials in general, we can denote them by f(z) = ax+0b
and g(z) = cx + d, with a,b, ¢, d being the parameters. Composing them in both
orders leads to

flg(x)) = alcx + d) + b = acz + ad + b;
g(f(x)) = clax + b) + d = acx + be + d.

At this point, we should make clear what sort of equality is at stake. One perspective
is to see fog and go f as new functions created by performing an operation on the
pair f and g. Then we may ask under what conditions are the functions f o g and
go f the same? For this to occur, they must have the same domain and take the
same value at each point of the domain: f(g(z)) = g(f(x)) for every real number
x. (This is usually expressed by saying that f(g(z)) = g(f(z)) is an identity in z.)
Here we are looking for conditions on the parameters a, b, ¢, d.

A second perspective is to consider the functions f and g to be given (i.e., a,b, ¢, d
represent a particular choice of numerical coefficients), and ask for which values of
x we have f(g(z)) = g(f(x)). (In other words, f(g(z)) = g(f(x)) is a conditional
equation for z.)

The equation f(g(z)) = g(f(x)) is equivalent to ad + b = bc+ d. This is notable
in that there is no dependence on x, What is the signficance of this? It means that
flg(x)) = g(f(z)) for some value of x implies that f(g(x)) = g(f(z)) for all values
of z. For a geometrical take on this, observe that the graphs of y = f(g(x)) and
y = g(f(x)) have the same slope, so that they are either distinct and parallel, or
they coincide. Thus they have either no point in common or every point in common.
A consequence is that if we want to check commutativity of two linear polynomials
under composition, we just have to check it for one value in the domain.

The condition ad + b = bc + d that f and g commute is not very informative as
it stands, so we transform it so that we can dig out other information more readily.
For example, it can be rewritten as

(a—1)d = (c—1)b.

This is helpful, because we are in a position to collect to one side of the equation
terms that pertain only to @ and b (i.e. to the function f) and to the other side
the terms that pertain only to ¢ and d. However, we can do this only if we are sure
we are not dividing by 0, so we must take care of that possibility first.

If a = ¢ =1, then the condition is satisfied and we can check that the functions
f(@) =z + b and g(z) =  + d commute and that the composite in either order
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is © 4+ b + d. Geometrically, each function represents a translation of the real line.
Their composition represents a translation through the sum of the distances of its
components.

If a =1 and b =0, then f(z) = z, and this commutes with any function. In fact
fog=gof =gsothat f is an identity function. The case ¢ = 1 and d = 0 is
similarly handled.

Finally, if b = d = 0, then f(z) = ax and g(x) = cx. Geometrically, each
function represents a dilatation of the real line, and the factor of the composite
dilatation is the product of the factors of the component dilatations.

Excluding these cases, we can now carry out the division and get the condition
for commuting in the form

(1) b d

l-a 1-¢
For example, if f(x) = bz + 2, then g(x) must have the form (2d + 1)x + d for
some real number d. It is straightforward to check that this works.
However, this is not the end of the matter, because the condition turns out

to signify a striking relationship between the two functions. Solving the equation
x = f(x) for the fixed point of f leads to

b
T=1
Similarly, we find that the fixed point of g is given by
_d
T= -

Thus equation (1) tells us that the two functions in question commute if and only
if they have a common fixed point.

With some reflection, we realize that this is not surprising. If f and g have a
common fixed point p, then f(g(p)) = f(p) = p = (p) = g(f(p)), 0 that fog and
g o f take the same value at p. But we already noted that this implies they take
the same value everywhere, and so are equal as functions.

On the other hand, suppose that f(p) = p and ¢g(¢) = ¢. Exluding the possibility
that either is the identity function z, we note that we obtain the fixed point by
solving a linear equation which has exactly one solution. Thus, p and ¢ are unique.
What happens if we take on board the hypothesis that f o g =go f? Then

9(f(q) = f(9(q)) = f(q)

so that f(q) is a fixed point of g. Therefore f(q) = ¢ by the uniqueness of the fixed
point of g. But the fixed point of f is also unique, so that p = q.

3. COMMUTING LINEAR POLYNOMIALS: PEDAGOGICAL ISSUES

As students advance in mathematics, they absorb greater levels of abstraction,
beginning with the notion of number itself. The symbols of algebra which first
play the role of placeholders of numbers become entities in their own right, as do
functions and polynomials in particular with their own structure. This process will
continue as students take on board in their later education such things as vector
spaces and groups. A similar evolution takes place in other areas, such as geometry
and combinatorics, and the syllabus should be taught keeping the need for such
maturation in mind.
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The basic technical requirements for this example, involving as it does linear
equations, is within the range of a Grade 9 course. But the level of sophistication is
high, and teachers who take it on must first take ownership of it by working through
the details on their own terms. Then follows a number of strategic decisions as to
the goals to be achieved and how to get there. A careful and sensitive approach
is needed that works out from what is familiar to the student and allows a steady
intellectual progression towards a textured approach that will help them enjoy
future success in mathematics. For the teacher has the task of not just securing
technical proficiency, but also of fostering judgment as well as precision and critical
thinking.

The teacher can be likened to a conductor of an orchestra. The syllabus and the
topics in it are the score. It is the conductor who has to bring it to life, a task that
requires scholarship, judgment, technical skill and empathy. The conductor has
to know the context and bring a unifying vision to the whole, make sure that the
level of skill of the orchestra is adequate and communicate his vision to the players
and the audience. While the music performed should be true to its composer
and its authenticity respected, each conductor has his own particular take that
distinguishes the performance.

So it is with the teacher. The mathematics she teaches should be reliably and
honestly presented, but she brings into the task her own experiences and analysis, a
sense of context and a treatment appropriate to the students in front of her. Before
the conductor meets with the orchestra, it is necessary to make a deep study of the
score and decide what its essence is. The teacher is in a similar position. She has
to live with the mathematics herself so that she gets her own feeling for what is
significant and pleasing. Good teaching is done from a foundation of experience —
the teacher is a witness to her subject.

From the get-go this example presents a challenge for a typical class. In my
experience, the flow of discussion can vary considerably from one group of students
to another. The following discussion is not intended to be prescriptive but only
to indicate issues that might arise or directions that teachers may find productive.
The composition of functions will likely be a new idea, as indeed is the idea of
a function itself. Is there something in the student’s previous experience that
can be formulated in terms of functionality? It is hard to convey composition
using words alone, and efficiency of communication demands that some notation
be invented. But this is part of what algebra is all about. Even at its most basic
level, we need to introduce variables to describe relationships, such as A = 712,
and solve algorithmically word problems that would be difficult if left in the realm
of arithmetic.

Thus, the first task is to introduce the notation f(z) and provide examples. Then
one can discuss f(g(x)) and g(f(z)) for particular pairs, such as (f(x),g(z)) =
(3x — 4,7z + 6). One should be sure to deal with the special case f(z) = = and
make the point that it is an identity, playing the role that 0 plays for addition
of numbers and 1 for multiplication. While working out examples of composition
can be a way of having the students do manipulative practice, the lesson can be
given a bit of direction by noting that f o g and go f seem to be generally different
and asking students to seek examples for which they are the same. (The idea of
a noncommutative operation will not be completely new, as students at this stage
should have been exposed to exponentiation and be aware that, for example, 23 and
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32 are different; however, the two directions of exponentiation can agree in special
cases, as 2% = 42))

Having students search for examples is a wonderful teaching tool, as it forces
then to pay attention to the details of the artefacts they are working with. If would
be interesting, at this stage, to see whether pairs of the form (f(x), g(z)) = (az, cx)
and (f(z),g(x)) = (z + b,z + d) emerge. If so, this provides the opportunity to
look at the geometric significance of the commutativity.

In general, it will probably be difficult for students to conjure up pairs, so a
strategy will be needed to generate them. Why not take a particular example, such
as f(z) = 3z — 4, and ask what it takes for ¢ and d for g for commute with f?
First, this is where the parameter-variable distinction weighs in, and it needs to
be understood that we are looking for particular values of ¢ and d to make the
commutativity work.

Let us look at this particular example in more detail. The condition f(g(x)) =
g(f(x)) leads to 3(cx+d) —4 = ¢(3x —4) +d. This equation bears information, but
it is not clear what we are supposed to do with it. To begin with, we can remove
brackets just to see what happens. A small miracle occurs; the terms in = are the
same on both sides of the equation, and we are left with 3d — 4 = —4c¢ + d, which
in turn simplifies to d 4 2¢ = 2, or d = 2(1 — ¢). This is the only condition that has
to be satisfied, so that there are infinitely many possibilities.

This illustrates a concept that is useful in physics, that of degrees of freedom.
The two variables ¢ and d represent potentially two degrees of freedom in that,
without restriction, we can make independent choices of values for them. However,
the equation d = 2(1 — ¢) is a restriction that ties one to the other. So there is a
net of one degree of freedom, and we can choose only one arbitrarily.

It is not a bad idea to check the answer. In particular, will any student realize
that any function has to commute with itself, so that taking (¢, d) = (3, —4) should
work? We know that the identity function x commutes with everything, so that
(¢,d) = (1,0) should be also satisfy the restriction. Students should be encouraged
to find other numerical values for ¢ and d and verify that they work, and then check
g(x) = cx+2(1 —c¢) generally. This is a cheap way of getting them to practice their
manipulative skills.

The equation d = 2(1 — ¢) is linear in ¢ and d, so students should be encouraged
to plot this line in the c-d plane and identify various points on it.

We are not done with this example. Consider f(z) = 3z — 4 and a function that
commutes with it, say g(z) = —z + 4, where the common composion is —3z + 8.
(Each student can select his very own example other than —x + 4, 3z — 4 and =z,
perform the following and then display the result before the whole class.) In the
standard z-y plane, plot the graphs of the two equations y = 3x —4 and y = —x +4,
or whatever the student picks. If will be noted that the two lines always intersect;
ask them to name the point of intersection. In every case, the lines will pass through
the point (2,2). What is the meaning of this? Since the coordinates are the same,
the point lies on the line y = x. In fact f(2) = 2 and ¢(2) = 2, so this provides the
incentive to introduce the notion of a fixed point. It is not hard to check that 2 is
a common fixed point of f(x) =3z —4 and g(z) = cx +2(1 — ¢).

Further examples can be studied that lead towards the formulation of the con-
jecture that commuting of the functions f(z) = ax 4+ b and g(z) = cx + d (when
a and b are distinct from 1) is equivalent to their having a common fixed point.
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Now we are in a position to tackle the general situation: under what conditions do
f(@) = ax + b and g(x) = cx + d commute? Follow the analysis in the previous
section to analyze the equation ad + b = bc 4+ d. This is a place where one has
to proceed cautiously to make sure that students maintain control over the conno-
tations of the variables. We might think of f(z) as a given example and see the
problem as finding a corresponding restriction of ¢ and d that ensure that f and g
commute. Or we can see the matter more symmetrically as a mutual relationship
between the functions f and g. It is vitally important first that the teacher think
through the situation first on her own in order to, first, decide on her own math-
ematical perspective, and, secondly, to determine what preparation is needed for
the members of her class to handle the situation. She also needs to be prepared for
whatever ideas might come from the students themselves, whether they arise from
misconceptions or from a competing viewpoint.

A benefit of this situation is that, because it involves a theorem, it takes us
into the realm of proof (an area that is often seen only in the context of Euclidean
geometry). Ideally, it would be nice if the students were led towards a conjec-
ture about the common fixed point characterizing commuting functions, perhaps
through checking out many examples of commuting and noncommuting pairs and
making observations. Important things to emphasize include the need for a restric-
tive hypothesis (that a and ¢ are not to be equal to 1) and the fact that the result
is the equivalence of two properties.

Basically, we would begin by solving for the fixed point of each function. Then
the structure of the reasoning would be as follows: f and g commute if and only if
(1) is true and if and only the expressions for the fixed points of f and g are equal.

There is an alternative way of proceeding after one has discussed a particular
case such as f(x) = 3z — 4 above. After looking at the intersections of the pairs
of lines, one can move to the general case and look at where the graphs of two
commuting functions intersect. As an exercise, students might be required to deal
with the general situation: Suppose that f(x) = ax+b and g(x) = cx + d commute
under composition. Determine the intersection of the graphs of y = f(x) and
y = g(z), and show that this point lies on the line with equation y = . This is not
an easy question. The abscissa (first coordinate) of the intersection point is found
by solving the equation ax + b = cx + d to get

d—>b

a—cC

Tr =

Plugging this into y = ax + b to get the ordinate (second coordinate) of the inter-
section point leads to

ad — be
Y= s
a—c

which does not look at all like the abscissa. But we have not yet fed in the hypothesis
that the functions commute. The condition for this is that ad + b = bc + d, so
ad —bc = d — b and we find that the two coordinates are indeed equal. (As a check,
the student might deal with g(x) rather than f(x).)

Again, this gets into the construction of a proof and the invoking of a hypothesis
to lead to a desired conclusion.
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4. CONCLUSION.

Since the foregoing represents a considerable investment of time, there are a
number of questions that the teacher needs to settle. What group of students are
likely to be receptive to it? For whom will it have value? The topic might not
be presented to the whole class, but could be pursued by a group of students as a
project or provided as enrichment in a mathematics club.

It will be argued that this topic is not on the list of expectations. But this
depends on what sort of expectations we are considering. There are expectations
of topic and expectations of practice and affect. The Ontario curriculum, for ex-
ample, mentions several desiderata that are relevant: Problem Solving, Reflecting,
Connecting, Critical Thinking, Reasoning and Proving. Such expectations can-
not be inculcated in isolation, but are meant to inform the different mathematical
topics to be covered and are best realized in a situation where there is particular
program of investigation, discovery and proving. The task in this article allows
students to “reason, connect ideas, make connections, apply knowledge and skills”.
It should provide the teacher with the opportunity to assess student understanding
of concepts, and possibly provide the students with some enjoyment.

Even if it is not on the syllabus, in prosecuting the example, will it support
the syllabus by requiring techniques and concepts that are part of the curriculum?
What is the cost-benefit analysis? The cost is not only one of the time of setting
up, but of taking students into fairly deep waters that they may not reap the value
of until later in their algebraic life. The benefit might be a better connection with
the mathematics that makes later learning easier. I argue that, with very simple
materials, one raises matters of algebraic thinking and practice that will foster
competence and fluency to a degree not normally seen among high school students.
Here we touch on the idea of function and their combinations, the role of variables
as unknowns, parameters and domain descriptors for functions, investigation and
conjecturing, and at the end the proof of a rather interesting result. Above all,
it teaches the important lesson that students must pay attention to details and
meaning, and not approach algebra as an automaton.

A rich situation like this prefigures aspects of algebra that might not be im-
portant at the moment but will emerge as students mature in the subject. In the
appendix, I look at how quadratic functions, a later topic in the syllabus, might
impinge.

Modern education is often criticized because many students do not know the
“basics” and are maladept at any sort of technical task. To be sure, there is truth
to this, but it is not the whole story. A more fundamental reason for student
difficuly is their misconception of what mathematics is. They seem to feel that it
is a body of fixed automatic processes that will lead inevitablly to an answer, and
so is something that can be learned solely by rote. Rather it is a way of thinking
that requires one to pay attention to structure, be careful about details and check
for accuracy, reasonableness and consistency. There is strength in this consistency;
while one may look at a mathematical situation in many different ways, each of them
supports and enriches the others. Anything that fosters flexible critical thinking
in the classroom will strengthen the student; anything that encourages a mindless
formulaic approach will work against the student.
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5. APPENDIX

Students should not be deceived into thinking that, for functions f and g in
general, the truth of f(g(z)) = g(f(x)) for one value of = implies its truth for all z.
A simple counterexample that might be possible for Grade 9 students and certainly
possible when students learn about quadratic functions is to see what commutes
with the square function. If we let f(z) = az + b and h(z) = 2%, and ask for the
circumstance under which f(h(x)) = h(f(x)), we are led to the condition

(2) (a® — a)x? + 2abx + (b* — b) = 0.

In this case, the condition that f o h = h o f requires that the quadratic equation
(2) in « is satisfied for all z.

This highlights an important point about polynomials that does not arise in the
normal course of events when quadratic equations are taught, and that is what sort
of polynomial equation will be satisfied for all values of x. Write the quadratic
equation in the form

px? 4+ qr 41 =0.

There are different ways of looking at the situation. If this quadratic is to vanish
for all x, then it must vanish for each particular x. If we make three substitutions
for z, then we obtain three homogeneous linear equations for the three variables p,
¢ and r. Tt turns out that the only solution for this system is (p,q,7) = (0,0,0).

For example, if t =0, x =1 and z = —1, we get
r=0;
p+qg+r=0;
and
p—q+r=0.

It is easily found that the three equations are satisfied simultaneously only by
(p,q,7) = (0,0,0).

Another way of looking at the situation is to note that if not all the coefficients
p, q,7 vanish, then we have a nontrivial polynomial equation of degree not exceeding
2. We can always solve such an equation and find that there are at most two
solutions.

Returning to the requirement that the equation (2) should be satisfied for all x
leads to

0=ala—1)=2ab=0b(b—-1),

which is satisfied only by (a,b) = (1,0) and (a,b) = (0,1). The first possibility leads
to f(x) = x, the identity function which commutes with every function. The second
possibity leads to f(z) = 1, a constant function that takes the value 1 everywhere.
Indeed, f(h(z)) =1 = h(f(x)) = 12

It is however possible that, for particular values of a and b that (2) has two
solutions. For example, let f(x) = 2z + 1 and h(x) = 22. Then f(h(z)) =222 +1
and h(f(z)) = (22 + 1)?, two different functions. However, f(h(0)) = 1 = h(f(0))
and f(h(~2)) = 9 = h(f(~2)).
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