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0. The equation.

A diophantine equation is a polynomial equation in any number of variables for
which solutions in integers are sought. Under investigation in this vignette is the
equation:

x4 + y3 + z2 − 3xyz = 0. [1]

Since this is the equation of a surface in three-dimensional space, there will be
infinitely many solutions in real numbers. However, it is not clear whether there
are any solutions where x, y, z take integer values, or even rational values.

1. Preliminary spadework.

The first thing we should do is to see whether there are any solutions at all. The
search for a solution often involves imposing some restriction that will lead to a
simpler equation.

(1) Find solutions where one of the variables takes the value 0.

(2) Are there any solutions for which x = y = z?

(3) Are there any “obvious” solutions?

(4) Try to find solutions for which at least one of the variables assumes the value
1; the value 2.

The idea is to find as many numerical solutions as you can and look for patterns
that may help you in generating other solutions. One useful observation is that the
polynomial is quadratic in the variable z, so that the equation can be rewritten as

z2 − (3xy)z + (x4 + y3) = 0. (1)

Suppose that we have found a solution (x, y, z) = (u, v, w) in integers. Then
z = w is one solution of the quadratic equation

z2 − (3uv)z + (u4 + v3) = 0.

This quadratic will have a second solution z = w′. Since

w + w′ = 3uv,

it follows that w′ is an integer. (Note also that

ww′ = u4 + v3.)
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(5) For all the solutions you have found so far, find the related solutions with
the same values of x and y and a different value of z.

2. The first family of positive solutions.

Two particular solutions of the equation are (x, y, z) = (1, 1, 2), (2, 4, 4). This
suggests that we might look for those solutions for which y = x2. Then we have to
solve

z2 − 3x3z + (x4 + x6) = 0. [2]

(6) Consider [2] as an equation in z. Show that its discriminant is equal to
x4(5x2−4) and deduce that there is a solution in integers where x is chosen so that
5x2 − 4 is the square s2 of some integer s.

(7) Find some integers x for which 5x2 − 4 is a square, and so determine more
soltions for equation [1] in positive integers.

We are led to consider the diophantine equation

s2 − 5x2 = −4. [3]

This particular type of equation occurs frequently in number theory and there is a
very elegant theory behind its solution. To set this up, we need to talk about surds
of the form s + x

√
5.

(8) Define the norm N of the surd s + x
√

5 to be the product of the surd and

its conjugate x− x
√

5:

N(s + x
√

5) = (s + x
√

5)(s− x
√

5) = s2 − 5x2.

Verify that

N((s1 + x1

√
5)(s2 + x2

√
5)) = N(s1s2 + 5x1x2 + (s1x2 + s2x1)

√
5)

= N(s1 + x1

√
5) ·N(s2 + x2

√
5).

The implication of this is that if we can find one solution of equation [3], which

asserts that N(s+ x
√

5) = −4, we can obtain other solutions of the same equation
by multiplying the surd involved by a surd of norm 1.

(9) Find the solution of s2 − 5x2 = −4 for which s and x have the smallest
positive values. Verify that

N( 3
2 + 1

2

√
5) = 1.

Use these facts to find an infinite sequence (sn, xn) of positive integer pairs (n ≥ 1)
for which s2n − 4x2

n = −4. This sequence of pairs will be defined by

sn+1 + xn+1

√
5 = (3

2 + 1
2

√
5)(sn + xn

√
5).

Determine and check numerical solutions for [1] for small values of n.
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(10) Write out the first few terms of the sequence {xn}. Make and prove a
conjecture about the relationship between each xn and its two predecessors in the
sequence for n ≥ 3.

3. The second family of positive solutions.

It is not hard to find solutions of [1] for which x = y and it may be worth
imposing this as a restriction towards the goal of finding a family of solutions with
this property. So we support that x = y and z = vx, an integer multiple of x. Now
the equation to be solved becomes

0 = x4 + x3 + v2x2 − 3vx3 = x2[x2 − (3v − 1)x + v2]. [4]

(11) We need to find integer solutions for the quadratic equation in x:

x2 − (3v − 1)x + v2 = 0.

For this to be possible, we need that its discrimant be a perfect square. Prove that
this happens if and only if (5v − 1)(v − 1) is a perfect square. Determine small
positive integer values of v for which this happens and use these to obtain solutions
of [1].

4. Solutions where the variables are not necessarily nonnegative.

Note that (x, y, z) satisfies equation [1] if and only if (−x, y,−z) satisfies the
equation, so we might as well assume that x > 0.

(12) Investigate solutions of [1] when (x, y) = (u − u) and (x, y) = (u,−u2) for
some positive integer u.

5. Discussion.

In this discussion, we exclude the trivial solution (x, y, z) = (0, 0, 0). An investi-
gation such as this can be carried on at different levels, depending on the interest
and capability of the students. It integrates topics from the syllabus, including
arithmetic (and use of the pocket calculator), pattern recognition and articulation,
algebraic manipulation, quadratic equations and surds. But apart from whatever
topics this impinges on, it foster important mathematics values such as being alert
to structure and picking out ingredients of a situation that may be significant, and
illlustrating the power of mathematics in finding solutions to problems that might
seem inaccessible.

Some of the work below leads to conjectures that may be beyond the scope of
a typical mathematical class to settle. However, these may be useful for students
with a special interest and talent, or could be used for enrichment.

(1) There are no nontrivial solutions when y = 0, since then the left side of [1]
would contain only positive terms. The condition z = 0 leads to x4 = −y3 = (−y)3,
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so that each side is both a fourth power and a cube. This leads to (x, y, z) =
(u3,−u4, 0) where u is any positive integer.

(2) The condition x = y = z leads to x2(x− 1)2 = 0 and the solution (x, y, z) =
(1, 1, 1). There is a second solution with the same x-values, obtained by solving the
quadratic equation 0 = z2 − 3x + 2 = (x− 1)(x− 2), namely (x, y, z) = (1, 1, 2).

(3) (4) (5) Some solutions that could be found by inspection and by solving the
quadratic in z when the values of x and y are known are

(x, y, z) = (1, 2, 3), (1,−2, 1), (1,−2,−7), (2, 4, 20).

(6) (7) By checking small integers, it can be discovered that 5x2 − 4 is a square
when x = 1, 2, 5. These correspond to the solutions

(x, y, z) = (1, 1, 1), (1, 1, 2), (2, 4, 4), (2, 4, 20), (5, 25, 50), (5, 25, 325).

In trying to find patterns, we observe that 4 = 4 × 1, 20 = 4 × 5, 50 = 25 × 2
and 325 = 25 × 13, where the multipliers of the y-value are 1, 2, 5. This suggests
checking out 5x2 − 4 when x = 13. Indeed, 5× 132 − 4 = 841 = 292, and this leads
us to the solutions

(x, y, z) = (13, 169, 845) = (13, 169, 169× 5)

and
(x, y, z) = (13, 169, 5746) = (13, 169, 169× 34).

(9)(10) We get the sequence {(sn, xn) : n ≥ 1} of solutions:

(1, 1), (4, 2), (11, 5), (29, 13), (76, 34).

By inspection, we can conjecture that xn+1 = 3xn − xn1
and solutions of equation

[1] are given by

(x, y, z) = (xn, x
2
n, x

2
nxn−1), (xn, x

2
n, x

2
nx

2
n+1).

Note in passing that the sequence {xn} picks up alternate terms of the Fibonacci
sequence. Note also that sn+1 = 3sn − sn−1 seems to be true as well. These
conjectures can be left to the more enthusiastic students to establish.

(11) It can be checked that 5v−1 and v−1 are both squares when v = 1, v = 2,
and v = 10. These lead to the solutions

(x, y, z) = (1, 1, 2), (1, 1, 4), (4, 4, 8), (4, 4, 40), (25, 25, 250), (25, 25, 1625)

respectively. We note that 8 = 4×2, 40 = 4×10, 250 = 25×10, and 1625 = 25×65.
The appearance of the factors 2 and 10 is suggestive, so we can check out v = 65.
We find that 5× 65− 1 = 324 = 182 and 65− 1 = 82.

Let us list the first few values of (v, v − 1, 5v − 1):

(1, 02, 22), (2, 12, 32), (10, 32, 72), (65, 82, 182).

This should allow us to conjecture that there are infinitely many values of v for
which (v − 1)(5v − 1) is square and lead us to an infinite family of solutions to
equation [1].
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(12) When (x, y) = (u,−u), then equation [1] becomes z2 + 3u2z + (u4−u3) = 0
and its discriminant is u3(5u + 4). This is a square if and only if u = v2 and
5u + 4 = w2, i.e. when w2 − 5v2 = 4. This can be analyzed similarly to the
previous cases. We find that (w, v) = (3, 1), (7, 3), (18, 8), (47, 21). Some solutions
obtained this way are (1,−1, 0), (1,−1,−3), (9,−9,−27), (9,−9,−216).

When (x, y) = (u,−u2), then equation [1] becomes z2 + 3u3z + (u4 − u6) = 0,
with discriminant equal to u2(13u2 − 4). If v2 = 13u2 − 4, then we have to analyze
the diophantine equaation v2 − 13u2 = −4. This has infinitely many solutions, the
smallest of which are (v, u) = (1, 1), (36, 10).


