BINARY EQUALITIES AND HARMONIOUS QUARTETS

A mathematical vignette
Ed Barbeau, Toronto, ON

§1. Harmonious quartets

The quartet $(a, b ; c, d)=(2,4 ; 4,2)$ is particularly harmonious. Its first two and last two entries have the same sum, product and exponential; in particular, the exponential operator turns out to be commutative in this case $2^{4}=4^{2}$. Such harmony is generally not attainable by quartets of integers, by we can nevertheless encounter some interesting tunes.

Specifically, we are going to consider 4-tples $(a, b ; c, d)$ of positive integers for which $a\langle c, b\rangle d$ and satify at least two of the three following properties:

A: $a+b=c+d$;
$\mathbf{M}: a b=c d$;
E: $a^{b}=c^{d}$.
Define an AM quartet to be a 4 -tple $(a, b ; c, d)$ that satifies \mathbf{A} and \mathbf{M} simultaenously, and $\mathbf{A E}$ and ME quartets similarly. All quartets of these types make up the class of harmonious quartets. There are trivial AM quartets found by taking c and d to be a and b in some order. We exclude these from further consideration. Such a device is not generally for harmonious quartets involving exponentiation since the operation is not commutative.

Exercise 1. Show that, in any hrmonious quartet, $a>1$.
Exercise 2. It is quite straightforward to determine all the AM quartets. Multiple the equation \mathbf{A} by a and use \mathbf{M} to obtain the equation $(a-c)(b-d)=0$. Alternatively, observe that the pairs (a, b) and (c, d) satisfy the same quadratic equation.

Exercise 3. Suppose that a, b, c, d satisfy equation E. Prove that there is are positive integers m, r, s for which the greatest common divisor of r and s is 1 , $r<s$ and

$$
a=m^{r} ; \quad b=m^{s} ; \quad r b=s d .
$$

Exercise 4. Before going further, we check how much leeway we have for commutativity of exponentiation. Suppose that $a^{b}=b^{a}$ with $a<b$. Apply Exercise 4 to obtain $a=m^{r}, b=m^{s}$ and obtain $m^{s-r}=s / r$. What are the possible values for m, r and s ?

Exercise 5. Suppose that $(a, b ; c, d)$ is a ME quartet. Determine the triple $(m ; r, s)$ as in Exercise 2 and show that $r m^{s-r}=s$, Deduce that $r=1$ and show that $(a, b ; c, d)$ must have the form $\left(m, s d ; m^{s}, d\right)$ and in addition satisfy $m^{s-1}=s$.

Observe that $2^{s-1} \leq m^{s-1}$, check that $s-1 \leq 2^{s-1}$ for all values of $s \geq 2$, and find all of the ME quartets.

It remains to investigate $\mathbf{A E}$ quartets. As Exercise 4 indicates, we may take $a=m^{r}$ and $c=m^{s}$ where r and s are coprime and $1 \leq r<s$. Equation \mathbf{E} implies that $b r=d s$; let k be the common value.

Exercise 6. From equation \mathbf{A}, deduce that

$$
k(s-r)=r s m^{r}\left(m^{s-r}-1\right) .
$$

Therefore, any AE quartet must have the form

$$
(a, b ; c, d)=\left(m^{r},(s-r)^{-1} s m^{r}\left(m^{s-r}-1\right) ; m^{s},(s-r)^{-1} r m^{r}\left(m^{s-r}-1\right)\right),
$$

where $s-r$ is a divisor of $m^{r}\left(m^{s-r}-1\right)$.
Conversely, verify that for any choice of $(m ; r, s)$ for which $s-r$ divides $m^{r}\left(m^{s-r}-\right.$ 1), we obtain a $\mathbf{A E}$ quartet.

In particular, when $s=r+1$, we obtain a $\mathbf{A E}$ quartet, so that there are infinitely many solutions to this equation. However, there are multitudes of solutions where $s-r$ exceeds 1 .

Exercise 7. As we see in Exercise 6, we can generate many AE sets according to pairs (m, n) for which n is a dividor of $m^{n}-1$. Prove that, if m is odd, and n divides $m^{n}-1$, then $2 n$ must divide $m^{2 n}-1$. Determine infinitely may values of n for which n divides $3^{n}-1$ and use this to generate infinitely many AE quartets for which $m=3$.

Exercise 8. Determine all the AE quartets $(a, b ; c, d)$ for which $a+b=c+d \leq 100$.

§2. Binary equalities

Exercise 9. Sketch the graph of all those real points (x, y) for which $x+y=x y$.
Exercise 10. Sketch the graph of all those positive real points (x, y) for which $x+y=x^{y}$.

Exercise 11. Sketch the graph of all those positive real points (x, y) for which $x y=x^{y}$.

Exercise 12. Sketch the graph of all those positive real points (x, y) for which $x^{y}=y^{x}$.

Notes. In Exercise 3, note that a and c are divisible by exactly the same set P of primes, so that $a=\Pi p^{i}$ and $c=\Pi p^{j}$, where the products are taken over P. Equation \mathbf{E} and the uniqueness of prime factorization applied to $\Pi p^{i b}=a^{b}=c^{d}=$ $\prod p^{j d}$ forces $b i=d j$ for every pair (i, j) of exponents. Thus for every prime $p \in P$,
the exponents are in the ratio $d: b$. Let $r: s$ be the proportional ratio in lowest terms (r and s are coprime). Then i / r and j / s are equal integers. Let

$$
m=\prod_{P} p^{i / r}=\prod_{P} p^{j / s}
$$

Then $a=m^{r}$ and $b=m^{s}$.
For Exercise 5 , since $s \leq m^{s-1}$ with equality if and only if $m=2$ and $s=2$, the only $M E$ quartets are of the form $(a, b ; c, d)=(2,2 d ; 4, d)$ where d is a positive integer.

For Exercise $8, c=m^{s}$ in particular must be less than 100 . Since $s \geq 2$, this forces m to be less than 10. If $5 \leq m \leq 9$, then $(r, s)=(1,2)$ Since $a+b=$ $m(1+2(m-1))<100$, this forces $m \leq 7$.

Here are the required $\mathbf{A E}$ quartets:

$(m ; r, s)$	$(a, b ; c, d)$	$a+b=c+d$
$(2 ; 1,2)$	$(2,4 ; 4,2)$	6
$(2 ; 1,3)$	$(2,9 ; 8,3)$	11
$(3 ; 1,2)$	$(3,12 ; 9,6)$	15
$(2 ; 2,3)$	$(4,12 ; 8,8)$	16
$(2 ; 2,4)$	$(4,24 ; 16,12)$	28
$(3 ; 1,3)$	$(3,36 ; 27,12)$	39
$(2 ; 3,4)$	$(8,32 ; 16,24)$	40
$(5 ; 1,2)$	$(5,40 ; 25,20)$	45
$(3 ; 2,3)$	$(9,54 ; 27,36)$	63
$(6 ; 1,2)$	$(6,60 ; 36,30)$	66
$(2 ; 3,5)$	$(8,60 ; 32,36)$	68
$(7 ; 1,2)$	$(7,84 ; 49,42)$	91
$(4 ; 1,3)$	$(4,90 ; 64,30)$	94
$(2 ; 4,5)$	$(16,80 ; 32,64)$	96

The equation $x y=x+y$ in Exercise 9 can be rewritten $(x-1)(y-1)=1$, so that the locus is a rectangular hyperbola with centre $(1,1)$ and axes given by $|y|=|x|$.

In Exercise 11, the equation can be rewritten as $x=\exp \left((y-1)^{-1} \log y\right)$.
In Exercise 12, the equation can be rewritten as

$$
\frac{\log y}{y}=\frac{\log x}{x} .
$$

The locus includes the line $y=x$ and also real points (x, y) where one coordinate lies in the intercal $(1, e)$ and the other in (e, ∞). This can be seen by examining the graph of the function $t^{-1} \log t$ and checking for where it takes the same value at two distinct points.

