A CUBIC FORM

A mathematical vignette
Ed Barbeau, Toronto, ON
Let $f(x, y, z)=x^{3}+y^{3}+z^{3}-3 x y z$.
(1) Solve for integers $x, y, z, f(x, y, z)=0$.
(2) Prove that, for each nonzero integer, $f(x, y, z)=n$ has only finitely many solutions (x, y, z).
(3) Determine necessary and sufficient conditions on the integer n for which there exist integers x, y, z for which $f(x, y, z)=n$.
(4) Observe that

$$
f(1,4,4)=81=f(5,2,2)
$$

Determine a generalization.
(5) Prove that, for any integers u and v for which $u+v$ is a multiple of 3 , other than 3 itself, there are at least two triples (x, y, z) of nonzero integers for which $f(x, y, z)=u^{3}+v^{3}$.

Solutions.

We begin with the factorization:

$$
\begin{aligned}
f(x, y, z) & =(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)=p\left(p^{2}-3 q\right) \\
& =\frac{1}{2}(x+y+z)\left((x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right)
\end{aligned}
$$

where $p=x+y+z, q=x y+y z+z x$.
(1) $f(x, y, z)=0$ if and only $x+y+z=0$ or $x=y=z$.
(2) If $f(x, y, z)=n \neq 0$, then $p=x+y+z$ must be a divisor of $2 n$ and so p can assume at most finitely many values. There are only finitely many ways in which $2 n / p$ can be written as the sum of three squares (not all of which work in the equation),
(3) We can solve the equation $f(x, y, z)=n$ if we can find x, y, z for which $(x, y, z)=n$ and $(x-y)^{2}+(y-z)^{2}+(z-x)^{2}=2$. The latter equation requires that two of the differences are 1 and the remaining one is 0 . If $(x, y, z)=(m, m, m+1)$, then

$$
f(m, m, m+1)=2 m^{3}+(m+1)^{3}-3 m^{2}(m+1)=3 m+1
$$

and if

$$
f(m, m+1, m+1)=3 m^{3}+6 m^{2}+6 m+2-3 m\left(m^{2}+2 m+1\right)=3 m+2
$$

Thus, every number n which is not a multiple of 3 leads to a solvable equation.

On the other hand, suppose $f(x, y, z)=p\left(p^{2}-3 q\right)$ is a multiple of 3 . Then p and $p^{2}-3 q$ must both be multiples of 3 , and so $f(x, y, z)$ is a multiple of 9 . Since

$$
f(m-1, m, m+1)=9 m,
$$

all multiples of 9 lead to a solution. Therefore, $f(x, y, z)=n$ is solvable if and only if n is not a multiple of 3 or is a multiple of 9 .
(4) Note that the two solutions for $f(x, y, z)=81$ are vectors whose coordinate sums are all the same. Observe that

$$
\begin{aligned}
f(w-x, w-y, w-z)= & (w-x)^{3}+(w-y)^{3}+(w-z)^{3}-3(w-x)(w-y)(w-z) \\
= & 3 w^{3}-3 w^{2}(x+y+z)+3 w\left(x^{2}+y^{2}+z^{2}\right)-\left(x^{3}+y^{3}+z^{3}\right) \\
& \quad-\left(3 w^{3}-3 w^{2}(x+y+z)+3 w(x y+y z+z x)-3 x y z\right. \\
= & 3 w\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) \\
& \quad-(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right) .
\end{aligned}
$$

If x, y, z are not all equal, $f(w-x, w-y, w-z)=f(x, y, z)$ if an only if $3 w=$ $2(x+y+z)$. Therefore, if we select any x, y, z for which $x+y+z$ is a multiple of 3 and define $w=\frac{2}{3}(x+y+z)$, then $f(x, y, z)=f(w-x, w-y, w-z)$. In the example $(x, y, z)=(1,4,4)$ and $w=6$.
(5) Suppose that $u+v=3 w$, then from (4), we find that

$$
f(2 w-u, 2 w-v, 2 w)=f(u, v, 0)=u^{3}+v^{3} .
$$

If $u+v$ is divisible by 3 , then $u^{3}+v^{3}$ is divisible by 9 , and so there are there is an integer x for which $f(x-1, x, x+1)=9 x=u^{3}+v^{3}$.

Is it possible that $(x-1, x, x+1)=(2 w-u, 2 w-v, 2 w)$ in some order? Taking the sum of the coordinates, we find that $3 x=6 w-(u+v)=3 w$, whence $x=$ w. This would force $(x-1, x, x+1)=(0, w, 2 w)=(0, x, 2 x)$, or $x=1$. Then $f(0,1,2)=9=1^{3}+2^{3}$. However, if $u+v \neq 3$, then the solutions $(x-1, x, x+1)$ and $(2 w-u, 2 w-v, 2 w)$ must be distinct.

