POWERS OF 2, 5 AND 10

A mathematical vignette

In the table below, we have listed the first few powers of 2 and 10. As the exponent n gets larger, so do the corresponding powers, and every once in a while, the power gets longer by one digit. Every time we increase the exponent by 1, exactly one of the two powers gets longer by one digit. Both powers cannot increase their length together, nor can they both keep the same length.

Table 1

n	2^{n}	5^{n}
1	2	5
2	4	25
3	8	125
4	16	625
5	32	3125
6	64	15625
7	128	78125
8	256	390625
9	512	1953125
10	1024	9765625

There is a related phenomenon. Express the powers of 10 to base 2 and to base 5 . For example, since

$$
\begin{aligned}
1000= & 512+256+128+64+32+8 \\
= & 1 \times 2^{9}+1 \times 2^{8}+1 \times 2^{7}+1 \times 2^{6}+1 \times 2^{5}+0 \times 2^{4} \\
& +1 \times 2^{3}+0 \times 2^{2}+0 \times 2+0 \times 1,
\end{aligned}
$$

we can write 1000 in base 2 numerations as $(1111101000)_{2}$, where it has 10 digits. Since

$$
1000=625+375=1 \times 5^{4}+3 \times 5^{3}+0 \times 5^{2}+0 \times 5+0 \times 1
$$

we can write 1000 in base 5 numeration as $(13000)_{5}$ with five digits.

If we write out all the powers of 10 in these two bases, for each whole number greater than 1 , there is a power of 10 that has a representation with that number of digits in exactly one of the two bases 2 and 5 . Successive powers of 10 in base 5 have $2,3,5,6,8,9,11, \ldots$ digits, while successive powers of 10 in base 2 have 4 , $7,10, \ldots$ digits $\left(10=(1010)_{2}, 10^{2}=(1100100)_{2}\right)$.

Table 2

n	10^{n} in base 2	10^{n} in base 5
1	1010	20
2	1100100	400
3	1111101000	13000
4	10011100010000	310000
5		11200000
6		
7		
8		
9		
10		

The reasons behind these phenomena are based on the fact that, in base b numeration, the number n has d digits if and only if $b^{d-1} \leq n<b^{d}$.

Consider the situation where 2^{n} and 5^{n} are written in base 10 . Suppose that 2^{n} and a digits and 5^{n} has b digits. Then

$$
10^{a-1}<2^{n}<10^{a} \quad \text { and } \quad 10^{b-1}<5^{n}<10^{b} .
$$

Multiplying these inequalities together, we find that

$$
10^{a+b-2}<2^{n} \times 5^{n}=10^{n}<10^{a+b} .
$$

Therefore $n=a+b-1$ or $a+b=b+1$. If we increase n by 1 , then $a+b$ also increases by 1 . This is possible if and only if exactly one of a and b increases by 1 .

We now look at the powers of 10 written to bases 2 and 5 . We first show that there are not two powers of 10 for which one has the same number of digits in base 2 as the other does in base 5 . For, suppose the contrary: the 10^{m} has k digits in base 2 while 10^{n} has k digits in base 5 . Then

$$
2^{k-1}<10^{m}<2^{k} \quad \text { and } 5^{k-1}<10^{n}<5^{k}
$$

Multiplying these two inequalities yields

$$
10^{k-1}<10^{m+n}<10^{k}
$$

an impossibility since 10^{m+n} cannot lie stricly between two consecutive powers of 10.

The number 10^{n} has k digits in base 2 if and only if $2^{k-1}<10^{n}<2^{k}$. This is he value of n where, in Table $1,2^{n}$ changes its number of digits. For example, 10^{3} has 10 digits in base 2 corresponding to the fact that between $n=9$ and $n=10$, 2^{n} gains one more digit, with $2^{9}<10^{3}<2^{10}$.

Likewise, 10^{n} has k digits in base 5 if and only 5^{n} gains one more digits at stage n in Table 1. We know that this cannot happen for the same n. Hence the same number of digits in bases 2 and 5 cannot occur for values of 10 . However, every number of digits will be represented in Table 2 in one column or the other.

