
OBLONG NUMBERS

A mathematical vignette

An oblong number is the product of two consecutive integers: 2, 6, 12, 20, 30,
42, . . .. The purpose of this vignette is to suggest investigations that might be
given at the middle school or early secondary level to introduce some aspects of
mathematical usage:

(1) the use of data to suggest mathematical patterns, make conjectures, formu-
late them algebraically, use algebra to establish their truth;

(2) looking at situations from different perspectives, each of which may offer its
own insight and directions for further investigation.

Can an oblong number be a perfect square?

This question can be looked at from different points of view, and, indeed, when
this is done with a group of students, it is possible for each of these to emerge.

It can be looked at in arithmetic terms. The key observation is to note that
the two terms of the product yielding the oblong number differ by 1, and so are
coprime. Therefore, if the product is square, each of its terms must be so, so that
you have two positive squares differing by 1.

Most of the time, students will accept that two positive squares cannot differ by 1,
but on one occasion, a student questioned this. When I sought an explanation, the
class was hard pressed to come up with a reason. One approach was to observe that
the difference between two consecutive squares increased: 4− 1 = 3; 9− 4 = 5; . . . ;
however, logically, this is slightly cumbersome because there is a hidden additional
step: if you are given two squares, the larger one is at least as great as the successor
square to the lower.

However, the question can be tackled neatly using algebra. Suppose x > y > 0.
Then x2 − y2 = (x + y)(x− y). If this product of two positive integers is equal to
1, then each term of the product must be 1, so that x + y = 1 and x− y = 1. The
only solution of this linear system is (x, y) = (1, 0) which we have excluded.

Note that this is a rigorous proof that shows algebra as a proof technique that
applies an algebraic identity.

Comment. A question that might follow on from this is what possible values can
a difference of squares of integers have. This can be looked at from the factorization
of x2 − y2 or from the remainders when squares are divided by 4.
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The product of two consecutive oblong numbers.

Consider the sequence of oblong numbers: 2, 6, 12, 20, 30, 42, 56, 72, 90, 110,
132, 156, 182, 210, 240, . . .

Looking at the sequence, one might conjecture that the product of consecutive
oblong numbers occur later in the sequence. There are at least two ways of ap-
proaching this conjecture. One is to look closely at the numbers, try to find a
pattern, express it algebraically and check the identity that is found. The sec-
ond is to express the oblong numbers and their product algebraically and try to
manipulate into the form of a product of two consecutive oblong numbers.

In the first instance, we have:

2× 6 = 12 = 3× 4;

6× 12 = 72 = 8× 9;

12× 20 = 240 = 15× 16;

20× 30 = 600 = 24× 25.

Let the lower oblong number in the product is n(n + 1). Then when n = 1, the
product of consecutive oblongs is 3 × 4; when n = 2, it is 8 × 9; when n = 3, it is
15× 16. If the student recognizes that these all involve squares, then the question
arises as to which squares, and we are led to conjecture

[n(n + 1)]× [(n + 1)(n + 2)] = [(n + 1)2 − 1]× (n + 1)2.

This can be checked by simply multiplying everything out, but an astute student
will notice immediately that (n+1)2 is a factor on both sides and it is just a matter
of checking the n(n + 2) = (n + 1)2 − 1.

However, if one takes the consecutive oblong numbers to be (n−1)n and n(n+1),
then multiplying these together gives immediately (n2 − 1)n2, which is recogniz-
ably oblong. Notice this approach involves judgment in selecting variables, and
recognition that the product has the right pattern.

Comments. (1) More generally, one can seek other pairs of oblong numbers
whose product is oblong.

(2) One can generalize oblong numbers to the product of pairs that all differ by
some number d ≥ 2:

d = 2: 3, 8, 15, 24, 35, 48, 63, 80, 99, 120, 143, 168, . . .
d = 3: 4, 10, 18, 28, 40, 54, 70, 88, 108, 130, 154, 180, . . .
d = 4: 5, 12, 21, 32, 45, 60, 77, 96, 127, 140, 165, 192, . . .

In the case of d = 2, one can notice the connection with the rather delicious
result that the product of four consecutive integers is always one less than a perfect
square:

n(n + 1)(n + 2)(n + 3) = [n(n + 2)][(n + 1)(n + 3)] = [(n + 1)2 − 1][(n + 2)2 − 1]

= [n(n + 3)][(n + 1)(n + 2)] = [n2 + 3n][n2 + 3n + 2]

= [(n2 + 3n + 1)− 1][(n2 + 3n + 1) + 1] = (n2 + 3n + 1)2 − 1.
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By the way, we also have the result that the the product of four consecutive integers
differs from the third greater square by a perfect square:

(n2 + 3n + 3)2 − n(n + 1)(n + 2)(n + 3) = (2n + 3)2.

Summing reciprocals of oblong numbers.

Finding the sum

n∑
k=1
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of the reciprocals of the first n oblong numbers. An examination of the this sum for
small values of n leads to the conjecture that the sum of 1− 1

n+1 . This result can
be established either by an induction argument or by summing by differences. The
latter involves creating a telescopic series by expressing each term as a difference
and allowing for a broad cancellation of all terms except the end ones.

There is a very useful identity that students can be introduced to:
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Now we can obtain the result:
n∑

k=1

1

k(k + 1)
=

n∑
k=1

(
1

k
− 1

k + 1

)

=

n∑
k=1

1

k
−

n+1∑
k=2

1

k

= 1 +

n∑
k=2

1

k
−

n∑
k=2

1

k
− 1

n + 1

= 1− 1

n + 1
.

As n increases, the sum gets closer and closer to 1, and we can say that the limit
of the sum as n tends to infinity is 1. This gives meaning to the equation

∞∑
k=1

1

k(k + 1)
= 1.

This fact can be kept as a special treat for particularly engaged students. They
will meet this idea of an infinite series later when they study geometric series.

“Pythagorean” triples of oblong numbers.

In examining the list of oblong numbers, it is not hard to locate triples of oblong
numbers for which the sum of the smallest two is equal to the third. For example,
30 + 42 = 72. As for regular Pythagorean triples, one can search for others and, if
possible, find patterns and perhaps a formula for such triples.
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Suppose

u(u + 1) + v(v + 1) = w(w + 1).

Multiplying by 4, we obtain the equivalent equation

(2u + 1)2 + (2v + 1)2 = (2w + 1)2 + 1.

So finding triples of oblong numbers is equivalent to solving the equation x2 +y2 =
z2 + 1, where x, y, z are all odd integers.

Some examples are given in the following table, where triples (u, v, w), and the
corresponding oblong triples and triples

(x, y, z) = (2u + 1, 2v + 1, 2w + 1)

are given.

(u, v, w) (u(u + 1), v(v + 1), w(w + 1) (2u + 1, 2v + 1, 2w + 1)
(2, 2, 3) (6, 6, 12) (5, 5, 7)
(3, 5, 6) (12, 30, 42) (7, 11, 13)
(5, 6, 8) (30, 42, 72) (11, 13, 17)

(6, 9, 11) (42, 90, 132) (13, 17, 23)
(8, 10, 13) (72, 110, 182) (17, 21, 27)

(11, 14, 18) (132, 210, 342) (23, 29, 37)
(14, 14, 20) (210, 210, 420) (29, 29, 41)

Futher analysis of the Diophantine equation x2 + y2 = z2 + 1 is given in the
appendix to this section.

It is interesting to note that the triples (u, v, w) = (2, 2, 3), (5, 6, 8), (8, 10, 13)
have the property that the first and last entries are consecutive Fibonacci numbers
and the middle entry is twice the previous Fibonacci number. But this does not
seem to be part of a regular pattern.

Appendix: x2 + y2 = z2 + 1

(1) The equation can be rewritten as x2 − 1 = (z + y)(z − y). Fix a value of
x, and let y and z be the variables. Then the equation has the obvious solution
(y, z) = (1, x). However, if x2− 1 has two factors g and h of the same parity which
differ by more than 2, then the system

z + y = g z − y = h

can be solved for integers z and y and another solution obtained. For example,
52−1 = 24 = 12×2 and we get (x, y, z) = (5, 5, 7). Since 72−1 = 48 = 24 = 12×4,
we get solutions (x, y, z) = (7, 11, 13), (7, 4, 8).

We can get families of solutions in this way. Suppose that x = 2r + 1, so that

x2 − 1 = 4r2 + 4r = 2(2r2 + 2r) = 4r(r + 1).

From the factorization 2(2r2 + 2r) we obtain the solution

(x, y, z) = (2r + 1, r2 + r − 1, r2 + r + 1).
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When r = 2s, then

x2 − 1 = 16s2 + 8s = 2(8s2 + 4s) = 4(4s2 + 2s),

and we obtain the solutions

(x, y, z) = (4s + 1, 4s2 + 2s− 1, 4s2 + 2s + 1), (4s + 1, 2s2 + s− 2, 2s2 + s + 2).

When r = 2s− 1, then

x2 − 1 = 16s2 − 8s = 2(8s2 − 4s) = 4(4s2 − 2s),

and we obtain the solutions

(x, y, z) = (4s− 1, 4s2 − 2s− 1, 4s2 − 2s + 1), (4s− 1, 2s2 − s− 2, 2s2 − s + 2).

When the values of x, y, z are all odd, we can use these to get three oblong numbers,
the largest of which is the sum of the other two.

(2) Another way to find solutions of the equation is to note that z2 + 1 is the
sum of two squares. This representation as the sum of two squares is unique when
z2 + 1 is either a prime or twice a prime. However, it can be expressed as the sum
x2 + y2 in other ways than (x, y) = (z, 1) if it has a prime factorization consisting
of primes congruent to 1 modulo 4 and other primes raised to an even power.

Using the fact that (a+ bi)(c+di) = (ac− bd, ad+ bc) and equating the absolute
value of the two sides yields the identity

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad + bc)2.

. For example

82 + 1 = 65 = 5× 13 = (12 + 22)(22 + 32) = 42 + 72,

and we obtain the solution (x, y, z) = (4, 7, 8). Also

122 + 1 = 145 = 5× 29 = (12 + 22)(22 + 52) = 82 + 92,

and we obtain the solution (x, y, z) = (8, 9, 12).

(3) Somewhat related to (2), we can note that at least one of x and y must be
odd. Setting x = 2s + 1, we can rewrite the equation as

4s(s + 1) = z2 − y2.

Every multiple of 4 can be written as the difference of two squares, often in more
than one way, and each such representation will yield a solution of x2 +y2 = z2 +1.

(4) One can generalize special cases. If u = v, this leads to x = y and the
equation z2 = 2x2 = −1, which is a Pell’s equation with solutions given by

zk + xk

√
2 = (1 +

√
2)(3 + 2

√
2)k

for k ≥ 1. Thus

(z, x) = (7, 5), (41, 29), (239, 169), . . . .

If v = u + 1, then y = x + 2, and we are led to the equation

2(x + 1)2 + 2 = x2 + (x + 2)2 = z2 + 1
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or z2 − 2(x + 1)2 = 1. The solutions of this Pell’s equation are given by

(zk + (xk + 1)
√

2) = (3 + 2
√

2)k

for k ≥ 1. Thus

(x, y, z) = (1, 3, 3), (11, 13, 17), (69, 71, 99), (407, 409, 577), . . . ,

and, corespondingly,

(u, v, w) = (0, 1, 1), (5, 6, 8), (34, 35, 49), (203, 204, 288), . . . .

We get the oblong triples

(0, 2, 2), (30, 42, 72), (1190, 1260, 2450), (41412, 41820, 83232), . . . ,

where the sum of the first two entries is equal to the third.

Twice oblong numbers.

One possible route for further investigation is to ask when twice an oblong num-
ber is a perfect square and more generally, by how much it differs from the next
higher square. Consider this table of values, where for the nth oblong number, the
next square not less than it is given by m:

n 2n(n + 1) m2 − 2n(n + 1) (m + 1)2 − 2n(n + 1)
1 4 0 5
2 12 4 13
3 24 1 25
4 40 9 24
5 60 4 21
6 84 16 37
7 112 9 32
8 144 0 25
9 180 16 45

10 220 5 36
11 264 25 60
12 312 12 49
13 364 36 77
14 420 21 64
15 480 49 96

Looking at the first few entries in this table, it seems that each double of an
oblong number differs from the next square up by a square, but this pattern is
broken at n = 10. However, a closer examination suggests that something more
subtle is going on. When the difference for the next square up is not a square, then
the following difference is a square. In fact, which occurs depends on the parity of
n when n ≥ 7.
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This suggests that we look at the oblong numbers for n = 2k − 1 and n = 2k
separately. In the first instance, we can see a pattern and verify that

2n(n + 1) = 2(2k − 1)(2k) = (3k − 1)2 − (k − 1)2.

This can be done expeditiously by factoring the right side as a difference of squares.

This is not the end of the story. The next square below (3k−1)2 is (3k−2)2. As
k grows larger, this square depends more strongly on its leading term 9k2. However,
the leading terms of 2n(n+1) = 2(2k−1)(2k) is 8k2, so that as k increases, (3k−2)2

is going to eventually surpass 2(2k − 1)(2k). We can check this.

(3k − 2)2 − 2(2k − 1)(2k) = k2 − 8k + 4 = k(k − 8) + 4,

which is positive if and only if k ≥ 8. So it seems that we did not continue our
table down far enough:

n 2n(n + 1) m2 − 2n(n + 1) (m + 1)2 − 2n(n + 1)
16 544 33 81
17 612 13 64
18 684 45 100
19 760 24 81
20 840 1 60
21 924 37 100
22 1012 12 77
23 1104 52 121

Now let n = 2k, so that 2n(n + 1) = 2(2k)(2k + 1) = 8k2 + 4k. Then

(3k + 1)2 − 2(2k)(2k + 1) = (k + 1)2.

However, the next lower square will eventually surpass 2n(n+1) when n gets larger
because of the leading terms 9k2 and 8k2. Indeed,

(3k)2 − 2(2k)(2k + 1) = k2 − 4k = k(k − 4),

which is nonnegative when k ≥ 4. Also

(3k − 1)2 − 2(2k)(2k + 1) = k2 − 10k + 1 = k(k − 10) + 1,

which is positive when k ≥ 10.

This means that focussing on m2 as the next square not less than 2n(n + 1) is
a bit of a red herring, since the representation of m shifts as n increases. However,
we have established that the value of 2n(n+1) augmented by a suitable square will
yield a square value.

One issue that comes up is a qualitative analysis of how algebraic expressions
vary, the idea that the value of a polynomial is largely determined by its leading
term when the variable takes large values, and by its terms of lower degree when the
variable is close to zero. A similar issue comes up when comparing, say, exponential
and polynomial growth.
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This investigation will not be suitable for every algebra class, but it can be
carried to different levels depending on the interests and abilities of the students.
For some, one can go further and ask when 2n(2n + 1) is itself a square or, given
some square number r2 when 2n(2n+1) = r2 is equal to a square number m2. The
condition 2n(n + 1) = m2 leads to the Pell equation

(2n + 1)2 − 2m2 = 1,

with solutions (n,m) = (1, 1), (8, 12), (48, 70), . . . . The condition 2n(n+1)+1 = m2

leads to the Pell equation

(2n + 1)2 − 2m2 = −1,

with solutions (n,m) = (0, 1), (3, 5), (20, 29), . . . . This is a rich vein for those stu-
dents who need greater motivation.

Note that asking for those values of n for which 2n(n + 1) is square is the same
as asking for those for which

1 + 2 + · · ·+ n =

(
n + 1

2

)
,

is square, a problem that has been well worked over.


