
GREGARIOUS AND RECLUSIVE TRIPLES

A mathematical vignette

Ed Barbeau

PART A: A VISIT TO THE LAND OF FIBONACCI

This vignette will introduce the reader to a very prolific area of mathematical
investigation that is accessible to both secondary students and their teachers. While
the basic problem is quite old, there are likely more interesting discoveries to be
made.

1. Triples, products and squares

For the triple of numbers (1, 3, 8), the product of any pair of them is one less
than a square. Similarly, the product of any two numbers in the triple (1, 2, 5)
is one more than a square. You may recognize the numbers in these triples as
alternate terms of the Fibonacci sequence, defined by the recursion f0 = 0, f1 = 1
and fn+1 = fn + fn−1 for each integer n. The terms with nonnegative even indices
are

0, 1, 3, 8, 21, 55, 144, 377, 987, . . . ;

we find that for each three consecutive terms (x, y, z) in this sequence xy+1, xz+1
and yz + 1 are all squares. Likewise, for each three consecutive terms (x, y, z) in
the sequence of Fibonacci numbers with positive odd indices,

1, 2, 5, 13, 34, 89, 233, 610, 1597, . . . ,

xy − 1, xz − 1 and yz − 1 are all squares. These are familiar Fibonacci properties.

Define a vector (x, y, z) of three integers to be a k−triple if xy + k = c2,
yz + k = a2 and zx + k = b2 for integers k, a, b, c. We have provided examples of
1−triples and (−1)−triples. Both of these can be embedded in a table of sequences
of k−triples. In this table, whose k = 1 row includes the foregoing Fibonacci
1−triple:

k ↓ n→ −5 −4 −3 −2 −1 0 1 2 3 4 5
−2 54 19 9 2 3 1 6 11 33 82 219
−1 29 10 5 1 2 1 5 10 29 73 194

0 4 1 1 0 1 1 4 9 25 64 169
1 −21 −8 −3 −1 0 1 3 8 21 55 144
2 −46 −17 −7 −2 −1 1 2 7 17 46 119
3 −71 −26 −11 −3 −2 1 1 6 13 37 94
4 −96 −35 −15 −4 −3 1 0 5 9 28 69

Any three consecutive entries in the row labelled k constitute a k−triple. Suppose
that the nth terms in this row is given by u(k, n). You will observe that for these
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rows, any three consecutive entries constitute a k− triple,

u(k,−2) = −k; u(k,−1) = −k + 1; u(k, 0) = 1;

and
u(k, n+ 3) = 2u(k, n+ 2) + 2u(k, n+ 1)− u(k, n).

The reader is invited to conjecture a general formula for u(k, n) and check out the
k−triples. (A good place to start is with row k = 0 and look at the value of u(k, n)
as n increases or decreases by 1.)

In a similar way, row k = −1 in the table below reproduces the (−1)−triples we
have already seen.

k ↓ n→ −5 −4 −3 −2 −1 0 1 2 3 4 5
−4 164 61 25 8 5 1 4 5 17 40 109
−3 139 52 21 7 4 1 3 4 13 31 84
−2 114 43 17 6 3 1 2 3 9 22 59
−1 89 34 13 5 2 1 1 2 5 13 34

0 64 25 9 4 1 1 0 1 1 4 9
1 39 16 5 3 0 1 −1 0 −3 −5 −16
2 14 7 1 2 −1 1 −2 −1 −7 −14 −41
3 −11 −2 −3 1 −2 1 −3 −2 −11 −23 −66

Let v(k, n) be the nth element in the kth row. In this extract, we note that the
kth row consists of k−triples, that

v(k,−2) = −k+4; v(k,−1) = v(k, 2) = −k+1; v(k, 0) = 0; v(k, 1) = −k;

and that
v(k, n+ 3) = 2v(k, n+ 2) + 2v(k, n+ 1)− v(k, n).

Again, the reader is invited to conjecture a general formula for v(k, n) and check
out the occurrence of k−triples.

Motivated by the recursion satisfied by u(k, n) and v(k, n), we define the right
associate of (x, y, z) to be the triple (y, z, w) where w = 2(y + z) − x, the left
associate of the triple (x, y, z) to be (2(x+y)−z, x, y) and the central associate
of (x, y, z) to be (x, 2(x+ z)− y, z).

A k−triple is gregarious if all its associates are k−triples (with the same value
of k). A sequence {un} satisfying the gregarious recursion un+3 = 2un+2 +
2un+1−un is k−gregarious if each three consecutive terms constitute a k−triple.
Each line in the foregoing tables is a gregarious sequence.

A k−triple whose associates are not all k−triples is said to be reclusive. Later,
we will find such triples.

Before continuing, we turn to the entries of the foregoing tables, whose entries
rely on the terms of the Fibonacci sequence. Let me remind you of properties of
the Finonacci sequence:
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Exercise 1. Esablish the following Fibonacci identities:

f2n+2 = f2n−2 + f2n + 2f2n−1;

f2n−2f2n + 1 = f22n−1;

f2n+3 = f2n−1 + f2n+1 + 2f2n;

f2n−1f2n+1 − 1 = f22n;

fn+1fn−1 − f2n = (−1)n;

fn+2fn−2 − f2n = (−1)n−1;

fn+2fn−1 − fn+1fn = (−1)n;

f2n+1f
2
n−1 + f4n = 2fn+1f

2
nfn−1 + 1;

f2n+2f
2
n−2 + f4n = 2fn+2f

2
nfn−2 + 1;

f2n+2f
2
n−1 + f2n+1f

2
n = 2fn+2fn+1fnfn−1 + 1.

Exercise 2. Prove the following identities:

f2n−1 − 3f2n + f2n+1 = 2(−1)n;

f2n+3 = 2(f2n+2 + f2n+1)− f2n;

fn+2 − 3fn + fn−2 = 0;

Exercise 3. Prove the following identities:

(f2n+1 − kf2n−1)(f2n+2 − kf2n) + k = (fn+2fn+1 − kfn−1fn)2;

(f2n+2 − kf2n)(f2n − kf2n−2) + k = f2n(fn+2 − fn−2)2.

Exercise 4. Examination of the foregoing tables gives rise to the conjecture:

u(k, n) = f2n+2 − kf2n;

v(k, n) = f2n−1 − kf2n.
Prove that {u(k, n)} and {v(k, n)} are gregarious k−sequences.

Exercise 5. Let (x, y, z) be a triple of consecutive entries in the kth row of
either of the foregoing tables. What do you observe about the relationship between
xy + k and z − (x+ y)?

Exercise 6. Find other k−triples that are not covered by the tables.
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PART B: A PLETHORA OF TRIPLES AND QUADRUPLES

2. How to construct lots of k−triples.

Exercise 7. Suppose that x, y and c are arbitrary integers. Let z = x+ y + 2c
and k = c2 − xy. Prove that xz + k = (x + c)2 and yz + k = (y + c)2, so that
(x, y, z) is a k−triple.

A k−triple for which z and k are related in this way is said to be superbly
gregarious or simply superb.

Exercise 8. Prove that the right and left associates of a superb k−triple are
also superb k−triples.

Comment. Note that for the triple (y, z, 2(y + z) − x), the role of c is now
played by (y + c). This result allows a simple way of establish that the sequences
{u(k, n)} and {v(k, n)} are k−gregarious since it necessary only to find an superbly
gregarious consecutive triple in each sequence.

If we permute the terms of (x, y, z) to (x, z, y), we find that y = x+ z− 2(c+ x)
and xz = [−(c+x)]2 and we can embed this triple in another sequence of k−triples.

We can look at this construction in three ways. Suppose we are given a triple
(x, y, z) and want to know if it is a k−triple for some k. If x+ y + z is even, then
x+ y and z have the same parity, and we can take c = 1

2 (z − x− y).

Suppose we are given an integer pair (x, y) and we want to embed it into a
k−triple (x, y, z) for some k such that xy + k equal to a given square c2. Then
simply define z = x+ y + 2c.

Finally, suppose that we are interested in k−triples for a specific value of k.
Pick any square c2 and chose x, y such that their product is c2 − k. In this way,
for example, we can find any number of 1−triples. With c = 5, we find (1, 24, 35),
(2, 12, 24), (3, 8, 21), (4, 6, 20). More generically, we have the infinite families
(1, c2 − 1, (c+ 1)2 − 1), (c− 1, c+ 1, 4c), (2, 2c(c+ 1), 2(c+ 1)(c+ 2)).

Thus we see that k−triples are prolific and many interesting infinite families of
such triples can be found. For example:

k (x, y, z) (a, b, c)
r2 + s2 + t2 − 2(rs+ st+ rt) (2r, 2s, 2t) (−r + s+ t, r − s+ t, r + s− t)
r2 + s2 + t2 − 2(rs+ st+ rt)− 2r (2r, 2s+ 1, 2t+ 1) (s+ t− r + 1, r − s+ t, r + s− t)

3. How to construct lots of k−quadruples.

It is natural to ask whether, for any value of k, there are k−quadruples of numbers
for which the product of any pair plus k is a square. The construction described
in Section 2 makes it quite straightforward to answer this in the affirmative. If
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we extend the triple (x, y, x + y + 2c) to the left, we get the quadruple (x + y −
2c, x, y, x + y + 2c). Since (x + y − 2c, x, y) and (x, y, x + y + 2c) are k−triples, it
is necessary only to arrange that

(x+ y − 2c)(x+ y + 2c) + k = (x+ y)2 − 4c2 + (c2 − xy) = (x2 + xy + y2)− 3c2

is equal to d2 for some integer d. In other words, we need to find numbers expressible
in each of the forms φ(x, y) = x2 + xy + y2 and ψ(c, d) = 3c2 + d2.

Exericse 9. Prove that φ(x, y) = φ(x+ y,−y) = φ(−x, x+ y).

Exercise 10. Prove that the forms φ(x, y) = x2+xy+y2 and ψ(c, d) = 3c2+d2.
(Hint: given (c, d), let (x, y) = (c + d, c − d). How can you go from (x, y) to a
corresponding (c, d)?)

In order to get k−quadruples whose entries are distinct, we can exploit the fact
the some numbers can be represented by both of the forms φ(x, y) or ψ(c, d) in
several ways, so that we can get numerous examples of k−quadruples by using each
c with each of the pairs (x, y) involved.

Exercise 11. There are several ways of representing each of the numbers 49,
91 and 133 by φ(x, y) and ψ(c, d). For each, use all of the possible triples (x, y, c)
to construct k−triples.

Exercise 12. There are parametric families of k−quadruples. Determine k−quadruples
when (x, y) = (2r, s), (2r, 2s), (2r, 2s+ 1), where r and s are arbitrary integers.

Exercise 13. Verify that each of the following are 1−quadruples:

(r − 1, r + 1, 4r, 4r(4r2 − 1));

(1, r2 − 1, r(r + 2), 4r(r3 + 2r2 − 1));

(r, s2−1+(r−1)(s−1)2, s(rs+2), 4r3s4+8r2(2−r)s3+4r(r−1)(r−5)s2+4(2r−1)(r−2)s+4(r−1));

(r, 4(r − 1), r − 2, 4(2r − 3)(2r − 1)(r − 1);

(r, s, r + s+ 2c, 2c(r + c)(s+ c)).

4. Reclusive k−triples and their families

Exercise 14. Not every k−triple generates a succession of k−triples when
embedded in a sequence satisfying the congenial recurrence. For example, when
x = y, there are triples for which (x, x, z) is a k−triple, but its right associate
(x, z, x + 2z) is not. With xy + k = c2, zx + k = b2, yz + k = a2, we have the
examples:

k (x, y, z) (a, b, c)
4r4 + 8r3 − 4r + 1 (2r + 1, 2r + 1, 2(2r + 1)) (2r2 + 2r + 1, 2r2 + 2r + 1, 2r2 + 2r)
r4 − 6r2s2 + s4 (2rs, 2rs, 4rs) (r2 + s2, r2 + s2, r2 − s2)

When z = x+y, we can make use of Pythagorean triples to construct k−triples.
Suppose that we have values k and c for which xy + k = c2. Then we want to find
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a and b for which a2 = yz + k = x2 + xy + k = x2 + c2 and b2 = xz + k = y2 + c2.
Thus (x, c, a) and (y, c, b) are both Pythagorean triples sharing the value of a leg.
(Such pairs of triples are easy to find; there are any many ways to express c2 as a
difference of squares as c2 can be factored as a product of two integers of the same
parity.) These triples allow us to isolate the values of a, b, c, x, y.

Exercise 15. The three Pythagorean triples (5, 12, 13), (9, 12, 15) and (35, 12, 37)
share the term c = 12. Using the three pairs of them, arrive at the reclusive
k−triples (5, 9, 14), (5, 35, 40) and (9, 35, 44) with values of k respectively equal to
99, −31 and −171.

The right associate of (5, 35, 40) is (35, 40, 145) and we note that 35×145−31 =
712 + 3, a near miss. This is not the only occurrence of this.

The k−triple (2r+ 1, r2(r+ 1)2− 1, r2(r+ 1)2 + 2r) with k = −(2r5 + r4− 4r3−
3r2 − 2r − 1) has right associate

(r4 + 2r3 + r2 − 1, r2 + 2r3 + r2 + 2r, 4r4 + 8r3 + 4r2 + 2r − 3).

We find that

(r4 + 2r3 + r2 − 1)(4r4 + 8r3 + 4r3 + 2r − 3)− (2r5 + r4 − 4r3 − 3r2 − 2r − 1)

= (4r8 + 16r7 + 24r6 + 18r5 + r4 − 12r3 − 7r2 − 2r + 3)

+ (−2r5 − r4 + 4r3 + 3r2 + 2r + 1)

= 4r8 + 16r7 + 24r6 + 16r5 − 8r3 − 4r2 + 1 + 3

= (2r4 + 4r3 + 2r2 − 1)2 + 3 = [2r2(r + 1)2 − 1]2 + 3.

Finding pairs of pythagorean triples with a common leg arise in the determination
of Heronian triangles, whose sides and area are all integers. Such triangle can be
constructed by pasting together two right triangles that share a common leg, as
shown in the diagram.

x y

ba c

Exercise 16. (a) We can take as a particular example x = r − 2, y = r + 2,
a = 2r − 1, b = 2r + 1, where r is an integer that exceeds 2. Show that, if there is
a solution in integers, then c = 3s where r2 − 3s2 = 1.
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(b) r2 − 3s2 = 1 is an example of a Pell’s equation which has infinitely many
solutions. Determine the solution (r1, s1) with the smallest positive integers, and
show that, for each n, (rn, sn) is a solution where

rn + sn
√

3 = (r1 + s1
√

3)n.

Both the sequences {rn} and {sn} satisfy the same second order recursion; find it.
Also show how each of rn+1 and sn+1 can be written as linear combinations of rn
and sn.

PART C: FINDING TRIPLES WHEN SOME ELEMENTS ARE KNOWN

5. Further application of Pell’s equation.

Once we start with a k−triple, (x, y, z), we can generate an infinite family of
k−triples with the same values of x and y. We will suppose that xy is not a square
and that xy + k = c2. Recall that the diophantine Pell’s equation u2 − (xy)v2 = 1
has infinitely many solutions (u, v) in integers.

Exercise 17. Let k, x, y, a and b be integers.

(a) Show that if there exists an integer z for which yz+ k = a2 and xz+ k = b2,
then (a, b) must satisfy

xa2 − yb2 = (x− y)k.

(b) Suppose that (a, b) satisfies the equation in (a) and that (u, v) satisfies the
diophantine equation u2 − (xy)v2 = 1. Verify that xA2 − yB2 = (x − y)k, when
(A,B) = (au+ ybv, bu+ xav).

(c) Suppose that xy+k = c2 and that xa2−yb2 = (x−y)k. Determine z so that
(x, y, z) is a k−triple. Is this triple necessarily congenial or necessarily reclusive?

Exercise 18. Let c be an integer. The triple (2, 4, 2c + 6) is a congenial (c2 −
8)−triple. Use the method of Exercise 14 to construct other k−triples for which
(x, y) = (2, 4) and determine whether they are congenial or reclusive. Check for
specific values of c.

Exercise 19. Determine a family of (−1)−triples for which (x, y) = (1, 5). Look
at the possible values of z and its relation to terms in the Fibonacci sequence. Make
a conjecture and prove it directly. Which triples are congenial?

6. Constructing triples from the related squares

We can construct k−triples by starting with the squares involved. Let a, b, c be
three arbitrary integers; we can factor the differences of their squares to construct a
k−triple (x, y, z) for which xy+ k = c2, xz+ k = b2 and yz+ k = a2. For example,
if b2− c2 = x(z− y), we can select different possibilities for the factors x and z− y.
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Thus, z − y will be among the divisors of b2 − c2, y − x among the divisors of
a2 − b2, and z − x among the factors of a2 − c2. However, the choice of divisors
from the three differences of squares will be constrained by the fact that

z − x = (z − y) + (y − x).

From these choices for z−x, z−y, y−x, we can get x, y, z from the cofactors of the
square differences and check that the values are consistent with their differences.

Exercise 20. Apply this approach to (a, b, c) = (11, 7, 3) to obtain k−triples
(x, y, z) for which xy + k = 9, xz + k = 49 and yz + k = 121. What are the
corresponding values of k?

Exercise 21. Determine k−triples (x, y, z) and associate squares (a, b, c) for
which x = b− c, y = a− c, z = a+ b. Are these congenial? superbly congenial?

Exercise 22. Investigate k−triples for which x = a+b, y = a+c, and z = a+b.

Exercise 23. Investigate k−triples for which x = b− c, y = a− c, z = a− b.

Exercise 24. Investigate x = b− c, y = a+ c, z = a+ b.

Exercise 25. Investigate the situation when x = 0 or when y = z.

Exercise 26. What are the possible k−triples when (a, b, c) = (5, 5, 4)? Which
ones are congenial? superbly congenial? reclusive?

7. Additional questions, some open

Question 1. For each nonzero integer k, what is the maximum number m of
entries in a set S of integers for which the values of xy + k for the

(
m
2

)
pairs (x, y)

of distinct elements of S are all squares, with no two equal?

Question 2. Must every congenial k−triple be superbly congenial?

Question 3. Can a triples (x, y, z) be a congenial k−triple for more than one
integer k.

Question 4. For each integer k we form a graph whose vertices are equivalent
classes of k−triples. Two k−triples are equivalent if the terms of one are the
negative of the terms of the other, the terms of one are a permutation of those
of the other, or a composite of these conditions. The vertices are the equivalent
classes of k−triples and two vertices are connected by an edge if and only if a
representative triple of one is an associate of a representative triple of the other. Is
the graph formed by the equivalence classes of congenial k−triples connected?

Question 5. Are there any k−triples (x, y, z) for which none of x, y, z is equal
to 0 or 1 and xyz + k is also a square?
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Question 6. Let k be an integer. Suppose that for some triple, the product
(xy+ k)(yz+ k)(zx+ k) is square. Under what circumstances does this imply that
each of the three factors is square?

Question 7. What are the possible values of the triple (k,m, d) for which there
is a k−sequence with each term congruent to d modulo m?

For example, if m is a common divisor of r and s, then (s2,m, 0) is such a triple
exemplified by the sequence

. . . , r − s, 0, r + s, 4r + 8s, 9r + 21s, 25r + 55s, . . . .

Are there any examples for which d 6= 0?

Question 9. Which k−triples are arithmetic progressions? geometric progres-
sions? harmonic progressions?

Question 10. Characterize triples (x, y, z) that are not k−triples for any value
of k?

8. Notes

Exercise 18. In this case, we are led to the equation a2−2b2 = −(c2−8), where
(a, b) = (c + 4, c + 2) is the starting solution. The (c2 − 8)−triple is (2, 4, 12c2 +
7c + 102). Here are some examples for specific values of c; they are all k triples,
but some are gregarious for another value of k. The value of k for which the triple
is gregarious is appended to the triple, thus (x, y, z; k).

c k (x, y, z; k))
−3 1 (2, 4, 0; 1) (2, 4, 12; 1) (2, 4, 420; 42841) (2, 4, 14280; 50936761)
−2 −4 (2, 4, 2; -4) (2, 4, 10; -4) (2, 4, 290; 20156)
−1 −7 (2, 4, 4; -7) (2, 4, 8; -7) (2, 4, 44; 353) (2, 4, 184; 7913) (2, 4, 1408; 491391)
0 −8 (2, 4, 6; -8) (2, 4, 102; 2296) (2, 4, 3366; 2822392)

Exercise 19. We obtain the−1triples (1, 5, 10), (1, 5, 65), (1, 5, 442), (1, 5, 3026).
These are all of the form (1, 5, f22n + 1) with the associated squares of (f2n−1 +
f2n+1, f2n, 2). For the product of the second and third entries, we have

5(f22n + 1)− 1− (f2n−1 + f2n+1)2 = 5f2n−1f2n+1 − 1− (f2n−1 + f2n+1)2

= f2n−1(f2n+1 − f2n−1) + (f2n−1 − f − 2n+ 1)f2n+1 + f2n−1f2n+1 − 1

= −f2n(f2n+1 − f2n−1) + f2n−1f2n+1 − 1 = −f2n2 + f2n−1f2n+1 − 1 = 0.

Exercise 20. We obtain the (−23)-triple (4, 8, 18) and the (−131)−triple (10, 14, 18),
both congenial.

Exercise 26. (a, b, c) = (5, 5, 4) gives rise to the congenial (−65)−sequence
{. . . , 61, 26, 9, 9, 10, 29, 69, . . . } and congenial 15−sequence
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{. . . , 61, 21, 10, 1, 1,−6,−11,−35, . . . ]. However, the factorization b2 − c2 =
3 × 3 yields the reclusive 7−triple (3, 3, 6). Notice that this is also a congenial
(−9)−triple.

Question 6. This has been investigated for k = 1 in the paper

Kiran S. Kedlaya, When is (xy+ 1)(yz+ 1)(zx+ 1) a square? Math. Mag. 71:1
(February, 1998), 61-63 .

The problems in this article undoubtedly have been well studied over a long
period. The best historical reference I have come across is the book

Andrej Dujella, Diophantine m−tuples and elliptic curves. Springer, 2024.

This has recently been published and the author has provided a summary on the
webpage https://web.math.pmf.unizg.hr/ duje/diophantine-mtuples-book.html. Here
is his link to a list of open problems: https://web.math.pmf.unizg.hr/ duje/pdf/open2.pdf.

What we call a k−triple, he calls a D(k)−triple, with analogous terminology for
m−tuples; a superb gregarious triple is, in his terms, regular (in my opinion, an
overworked word in definitions).

Dujella dates interest in this problem to the discovery by Diophantus that
( 1
16 ,

33
16 ,

17
4 .

105
16 ) is a 1−quadruple with rational entries. This is equivalent to (1, 33, 68, 105)

being a 256−quadruple. We note that the triple (1, 33, 68) is congenial with left
associate (0, 1, 33) and right associate (33, 68, 201), However, (33, 68, 105) is reclu-
sive, since neither its left or right associates, (97, 33, 68) and (68, 105, 313) are
256−triples. Diophantus also discovered other examples of k−quadruples with
k 6= 1.

Fermat is credited with finding the first 1−quadruple (1, 3, 8, 120); in 1969, Baker
and Davenport showed that 120 is the only value of d that makes (1, 3, 8, d) a
1−triple. Euler made significant progress, initiating over 200 years of intemittent
and increasingly deep progress.

To construct a k−quadruple (x, y, z, w) by extending a k−triple, we have to
determine w so that v2 = (xw + k)(yw + k)(zw + k), the equation of an elliptic
curve in the wv-plane. Accordingly, the bulk of Dejella’s book is the development
of the theory of elliptic curves to support researchin this area.

For the cases k = ±1, a few results and additional references are given on pages
153-155, 157-159 of the book

Edward J. Barbeau, Power play. The Mathematical Association of America,
1997 ISBN 0-88385-523-2

https://web.math.pmf.unizg.hr/~duje/diophantine-mtuples-book.html
https://web.math.pmf.unizg.hr/~duje/pdf/open2.pdf

