Trigonometry Test Solutions.

Answers to the Test:

1. F 2. T
2. A 7. D

Solutions and Comments:

1. For all $x, \sin (2 x)=2 \sin x$; this is False.

For instance, if $x=\frac{\pi}{2}$, then $2 \sin x=2(1)=2$, but $\sin (2 x)=\sin \pi=0$. What is true is that

$$
\sin (2 x)=2 \sin x \cos x
$$

2. $\tan \frac{\pi}{3}=\sqrt{3}$; this is True.

Everybody should know the trig ratios of the $\frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}$ (or $30^{\circ}, 60^{\circ}, 90^{\circ}$) triangle, at the right. So

$$
\tan \frac{\pi}{3}=\tan 60^{\circ}=\frac{\sqrt{3}}{1}=\sqrt{3} .
$$

3. If θ is in the second quadrant, then $\sqrt{1-\sin ^{2} \theta}=-\cos \theta$; this is True.

Simplify:

$$
\sqrt{1-\sin ^{2} \theta}=\sqrt{\cos ^{2} \theta}=|\cos \theta|=-\cos \theta
$$

since $\cos \theta<0$ in the second quadrant.
4. The number of solutions to the equation

$$
2 \sin ^{2} x-\sin x-1=0
$$

in the interval $0 \leq x \leq 2 \pi$ is 3 .
Factor and solve:

$$
\begin{aligned}
& 2 \sin ^{2} x-\sin x-1=0 \\
\Rightarrow & (2 \sin x+1)(\sin x-1)=0 \\
\Rightarrow & 2 \sin x+1=0 \text { or } \sin x-1=0 \\
\Rightarrow & \sin x=-\frac{1}{2} \text { or } \sin x=1
\end{aligned}
$$

From the graph of $\sin x$ to the right, you can see there are three solutions if $0 \leq x \leq 2 \pi$. Aside: the solutions are

$$
x=\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}
$$

5. If $\sin x=\frac{3}{4}$ and $\cos x<0$, then the exact value of $\tan x=-\frac{3}{\sqrt{7}}$.

Use the basic trig identity, $\sin ^{2} x+\cos ^{2} x=1$, to find $\cos x$:

$$
\cos x=-\sqrt{1-\sin ^{2} x}=-\sqrt{1-\left(\frac{3}{4}\right)^{2}}=-\sqrt{\frac{7}{16}}=-\frac{\sqrt{7}}{4} .
$$

Then

$$
\tan x=\frac{\sin x}{\cos x}=\frac{\frac{3}{4}}{-\frac{\sqrt{7}}{4}}=-\frac{3}{\sqrt{7}} .
$$

6. The radian measure of 45° is

$$
45\left(\frac{\pi}{180}\right)=\frac{\pi}{4}
$$

7. If a right triangle has sides of length 9,40 and 41 and α is the angle between the sides of length 9 and 41, then

$$
\sin \alpha=\frac{40}{41} .
$$

From the triangle to the right, you can see that

$$
\sin \alpha=\frac{40}{41} .
$$

