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Abstract. The classical inverse problem (see [23]) asks to what extent it is
possible to determine the shape of a domain 𝛺 ⊂ ℝ2 (or of a manifold), by the
knowledge of all eigenvalues of the Laplace operator on 𝛺 (with e.g. Dirichlet
boundary conditions). A dynamical version of this question can be stated by
replacing the set of eigenvalues of 𝛥 with the Length spectrum, that is the set
of all lengths of all possible closed billiard orbits on 𝛺 (or all closed geodesics in
the case of manifolds). In these lectures, we will mention the deep connection
between the Laplace inverse problem and the dynamical inverse problem; we
will present in detail some results on the dynamical side (see [3, 12, 13]) and
explore the possible outcomes of the current research in this direction.

Dedication

My interest in this topic resonated heavily with the research work of Steve
Zelditch, whom I had the privilege to discuss with in several occasions (in front
of a blackboard, on zoom, at various coffee shops, or again at a certain restaurant
in Evanston). Steve passed away on September 2022, leaving a huge void in the
community. In these lectures I will try to convey part of his monumental work,
as seen from the dynamical side.
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Lecture 1. An impressionistic picture of the problem

This section is meant to be a (somewhat) gentle introduction to the topic of
(dynamical) spectral determination and rigidity.

The story that we are about to read about has very deep roots in Geometry,
and describes a class of very important problems in PDEs (e.g. inverse problems),
and –more recently– in Dynamics. The purpose of this section is to be a basin
in which we collect results, and from which we will draw inspiration in different
contexts in the following sections. All results that will be stated in this section
will be mentioned with no proofs (or even hint to the proofs). Also, most of the
basic concepts that will appear in this introduction will only be casually defined.
Those ideas or tools that will be actually needed in the sequel will be given a
proper treatment in the following lectures.

··––····––··
Let 𝑀 be a smooth closed (i.e. boundaryless and compact) manifold and let 𝑔 be

a smooth Riemannianmetric on𝑀. Ametric 𝑔 yields, in particular, the length ‖𝑣‖𝑔
of any vector (𝑥, 𝑣) ∈ 𝑇 𝑀 in the tangent bundle. Given 𝑝 = (𝑥, 𝑣) ∈ 𝑇 𝑀, we let
𝜋𝑝 = 𝑥 be the projection on the manifold. Two Riemannianmanifolds (𝑀, 𝑔) and
(𝑀 ′, 𝑔′) are said to be isometric if there exists a diffeomorphism 𝑓 ∶ 𝑀 → 𝑀 ′

that carries the Riemannian structures back and forth, i.e. 𝑓∗𝑔′ = 𝑔.

Given a parametrization of a continuously differentiable curve 𝛾 ∶ 𝐼 → 𝑀,
where 𝐼 = [𝑎, 𝑏] ⊂ ℝ, 𝑔 defines the length of 𝛾 by integrating the length of each
tangent vector along the curve, that is:

𝐿𝑔(𝛾) = ∫
𝐼

‖ ̇𝛾(𝑠)‖𝑔𝑑𝑠.

A parametrization 𝛾 is said to be proportional to arc-length if ‖ ̇𝛾‖𝑔 is constant in 𝐼;
it is said to be the arc-length parametrization if ‖ ̇𝛾‖𝑔 = 1.

A curve 𝛾 is called a geodesic with respect to the metric 𝑔 if it is parametrized
proportionately to arc-length and for any 𝑠 ∈ 𝐼 there exists a neighborhood 𝐽 ∋ 𝑠
so that 𝛾|𝐽 is of minimal length among all curves that connect the boundary points
𝜕𝛾|𝐽.

1.1. Classical dynamics on (𝑀, 𝑔) and the Length spectrum. Geodesics sat-
isfy the equation of parallel transport

∇�̇� ̇𝛾 = 0,

where ∇�̇� is the covariant derivative (also induced by the Riemannian structure).1

It follows (a standard result) that, given an element of the tangent bundle (𝑥, 𝑣) ∈
𝑇 𝑀, there exists a unique geodesic 𝛾 ∶ (−𝜀, 𝜀) such that 𝛾(0) = 𝑥, ̇𝛾(0) = 𝑣;

1You do not need to know what it means, but you can appreciate that this is a second order
differential equation, so specifying an initial point and an initial direction guarantees a unique
solution.



DYNAMICAL SPECTRAL DETERMINATION AND RIGIDITY 3

in particular ‖ ̇𝛾‖ is constant. Because of this homogeneity, it is customary to
consider to the unit tangent bundle

𝑇 1𝑀 = {(𝑥, 𝑣) ∈ 𝑇 𝑀 s.t. ‖𝑣‖𝑔 = 1}

given by those tangent vectors that are of unit length. By the standardHopf–Ringo
theorem, the geodesic 𝛾 admits a unique extension to ℝ as a geodesic.

Each Riemannian metric thus induces a flow on the unit tangent bundle that
we call the Geodesic Flow:

𝛷𝑔 ∶ ℝ × 𝑇 1𝑀 → 𝑇 1𝑀
(𝑡, (𝑥, 𝑣)) ↦ (𝑥′, 𝑣′),

defined as follows: let 𝛾(𝑠) be the arc-length parametrization of the unique geo-
desic passing by (𝑥, 𝑣) at time 0 (i.e. (𝑥, 𝑣) = (𝛾(0), ̇𝛾(0))); then we let 𝑥′ = 𝛾(𝑡)
and 𝑣′ = ̇𝛾(𝑡). Since solutions to ODEs depend smoothly on initial conditions,
the Geodesic Flow is smooth.

A point 𝑝 = (𝑥, 𝑣) ∈ 𝑇 1𝑀 is called periodic if there exists 𝑇 > 0 so that
𝛷𝑔(𝑡, 𝑝) = 𝑝. Such a 𝑇 is called a period of 𝑝: notice that if 𝑇 is a period of 𝑝,
then so is any 𝑇 ′ ∈ 𝑇 · ℤ. Given a periodic point 𝑝, we call prime period of 𝑝 the
smallest 𝑇 > 0 in ℝ which is a period of 𝑝. Observe that the curve 𝛾 ∶ [0, 𝑇 ] → 𝑀
given by 𝛾(𝑡) = 𝜋𝛷𝑔(𝑡, 𝑝) is a closed curve of length 𝑇. By construction, it is a
geodesic.

The main character of these notes is the following object:

LS(𝑀, 𝑔) = {𝑇 > 0 s.t. 𝑇 is a period of some periodic point} ⊂ ℝ>0.

We call the above set the Length Set2 of (𝑀, 𝑔). Notice that it is an “unformatted”
set of numbers. Refinements of this concept will appear below, in which we con-
sider multiplicities, markings, etc., but for now we are only considering the set as
a subset of ℝ.

1.2. Quantum dynamics on (𝑀, 𝑔) and the Laplace spectrum. Periodic or-
bits can be regarded as “stable” motions of the geodesic flow, which is –physi-
cally– the classical free motion of a particle on the manifold. The quantum free
motion of a particle on the manifold is, on the other hand, determined by a PDE,
which is the free Schrödinger equation

𝑖ℏ ̇𝛹 = 𝛥𝑔𝛹,

where 𝛥𝑔 is the Laplace–Beltrami operator associated3 to the metric 𝑔. Clearly,
eigenfunctions of 𝛥𝑔 correspond to “stable” quantum states; the corresponding

2The reasonwe do not call it Length Spectrum at this stage is that a spectrum is implicitly assumed
to contain information about multiplicities, and we cannot do this in this generality.

3In case you really want to know, it is defined, in coordinates, as

𝛥𝑔 = 1
√|𝑔|

𝑛

∑
𝑖,𝑗=1

𝜕
𝜕𝑥𝑖

𝑔𝑖𝑗√|𝑔| 𝜕
𝜕𝑥𝑗

where 𝑔𝑖𝑗 = 𝑔( 𝜕
𝜕𝑥𝑖

, 𝜕
𝜕𝑥𝑗

), 𝑔𝑖𝑗 is the inverse matrix and |𝑔| = det𝑔𝑖𝑗.
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eigenvalues are –physically– the energy levels of the state. The spectrum of the
Laplacian is conventionally defined as4:

ΔS(𝑀, 𝑔) = {𝜆 ∈ ℝ≥0 s.t. ∃𝛹 ∈ 𝐿2(𝑀, 𝑔) with 𝛥𝛹 + 𝜆2𝛹 = 0}.

Since 𝑀 is compact, ΔS(𝑀, 𝑔) is discrete; typically one considers ΔS to be a set
with multiplicities in case some of the eigenvalues are degenerate.

1.3. The Wave Trace formula. On top of the philosophical affinity, there is a
strong, surprising and fascinating mathematical connection between LS(𝑀, 𝑔)
and ΔS(𝑀, 𝑔), which can be described using the Wave Trace Formula. The wave
trace is defined as the trace of the operator

𝑈(𝑡) = 𝑒𝑖𝑡√−𝛥𝑔 ∶ 𝐿2(𝑀, 𝑔) → 𝐿2(𝑀, 𝑔)

and can be defined as

𝑆(𝑡) = ∑
𝜆∈ΔS(𝑀,𝑔)

𝑒𝑖𝜆𝑡

(the convergence of the sum on the right hand side is intended in the sense of
distributions). The following amazing result holds
Theorem 1.1 (Poisson’s relation for closed manifolds [9, 8, 15]).
If 𝑡 ∉ ±LS(𝑀, 𝑔) ∪ {0}, the distribution 𝑆 is 𝐶∞ at 𝑡.

More specifically, one can in fact write a singularity expansion:

𝑆(𝑡) = 𝑒0(𝑡) + ∑
𝐿∈ΔS(𝑀,𝑔)

𝑒𝐿(𝑡) mod 𝐶∞,

where 𝑒0 and 𝑒𝐿 are distributions with singularities at just one point (resp. 𝑡 = 0
and 𝑡 = 𝐿). If there are no two distinct (modulo time-reversal) geodesics with the
same length (this is a generic feature of 𝑔), then we can indeed conclude that 𝑆(𝑡)
is singular at 𝑡 if and only if 𝑡 ∉ ±LS(𝑀, 𝑔) ∪ {0}, that is to say that generically,
the Laplace spectrum determines the Length spectrum.
Remark 1.2. ThePoisson’s relation also holds for manifolds with boundary thanks
to the work of Andersson–Melrose [1] and Guillemin–Melrose [21]. See [28] for
an in-depth exposition of the result.

1.4. Spectral determination. It follows by the definitions that any two isomet-
ric manifolds will have the same Length Set and the same Laplace Spectrum. The
Laplace inverse problem, or the (quantum) problem of spectral determination can
be stated as follows:

If two manifold (𝑀, 𝑔) and (𝑀 ′, 𝑔′) have the same Laplace spec-
trum, are they necessarily isometric?

Corresponding questions can be formulated for the Length set LS(𝑀, 𝑔):
If two manifolds (𝑀, 𝑔) and (𝑀 ′, 𝑔′) have the same Length Set ,
are they necessarily isometric?

4Below, the notation 𝐿2(𝑀, 𝑔) is shorthand for 𝐿2(𝑀,Vol𝑔), where Vol𝑔 denotes the Borel
measure on 𝑀 induced by the Riemannian Volume associated to 𝑔.
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It was first realized by Milnor that, in general, both these problems has a neg-
ative answer. Milnor found a (somewhat exotic) counterexample in 1964 (two
non-isometric but isospectral flat structures on T16), but there are famous coun-
terexamples even in constant negative curvature introduced in the late 1970’s by
Marie-France Vigneràs [31] and later developed by T. Sunada [30]. Notice that, in
view of the Poisson relation mentioned in the previous section, a negative answer
to the quantum question implies a negative answer to the classical question.

A positive answer to the problem of Laplace determination for surfaces was
provided, under symmetry and analiticity assumptions, by Steve Zelditch in the
late 1990’s:
Theorem 1.3 (Zelditch [32]). Assume that (𝑀, 𝑔) and (𝑀, 𝑔′) are real analytic
simple surfaces of revolution for which the meridian geodesic length is simple. Then
ΔS(𝑀, 𝑔) = ΔS(𝑀, 𝑔′) implies 𝑔 = 𝑔′.
Remark 1.4. The above result hinges on three crucial assumption: symmetry,
analiticity and some kind of generic non-degeneracy. These assumptions are typ-
ical in every result about determination, unless additional properties are added,
as we will discuss in the next subsection.

An extremely interesting, in-depth and (unlike this section) rigorous piece on
the topic of Laplace determination is the fantastic survey [34] by Zelditch.

1.5. TheMarked Length Spectrum. It becomes then clear that additional infor-
mation is needed to state an interesting problem, and –as it turns out, in order to
obtain this additional information it is necessary to add some additional structure.

Brilliant affirmative results are in fact available; most of them pertain the class
of negatively curved manifolds.

An important feature (for us) of such manifolds is that each free homotopy class
has a unique geodesic representative. This is to say that any closed geodesic is
unique among its free homotopy class. This allows to add some information (a
marking) to the length spectrum, and this extra information is crucial in the prob-
lem of spectral determination.

Let 𝑀 be a smooth closed manifold and let 𝒞(𝑀) denote the set of free homo-
topy classes of 𝑀; in other word, each 𝑐 ∈ 𝒞(𝑀) is a closed loop in 𝑀 modulo
homotopy.
Proposition 1.5. Let 𝑀 be a smooth closed manifold, and 𝑔 a smooth Riemannian
metric on 𝑀 of negative curvature. Then, for any 𝑐 ∈ 𝒞(𝑀), there exists a unique
representative 𝛾𝑐 ∈ 𝑐 that is a unit-speed geodesic with respect to 𝑔.

Leveraging on the above mentioned uniqueness property, we can define the
Marked Length Spectrum of a negatively curved Riemannian manifold.
Definition 1.6. Let (𝑀, 𝑔) be a negatively curved Riemannian manifold, then we
can define MLS𝑀,𝑔 ∶ 𝒞(𝑀) → ℝ≥0 as the map:

𝑐 ↦ len𝑔(𝛾𝑐)
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The length spectrum LS(𝑀, 𝑔) is just the image of MLS; in this sense, the map
MLS defines a marking of the length spectrum, as it specifies which orbit(s) cor-
respond to a given length. In absence of such a marking, it seems (for now) that
the information contained in the length spectrum (or in the Laplace spectrum) is
insufficient to fully recover the metric

Adding this extra bit of topological information turns out to be crucial; let us
reformulate the spectral determination question as follows:
Question. Assume that (𝑀, 𝑔) and (𝑀, 𝑔′) are negatively curved manifolds that
have the same Marked Length Spectrum, are they isometric?

The first results in this direction gave a positive answer to a question that in-
volves a weaker notion of determination. In order to discuss such notions, we
need to introduce the notion of deformations of a metric.
Definition 1.7. Let 𝑀 be a smooth manifold and (𝑔𝑡)𝑡∈(−𝜀,𝜀) a smooth family of
smooth Riemannian metrics. The family 𝑔𝑡 is said to be a deformation of 𝑔0. A
family is said to be trivial if there exists a family of diffeomorphisms 𝑓𝑡 ∶ 𝑀 → 𝑀
so that 𝑔𝑡 = 𝑓𝑡∗𝑔0. A family is said to be isospectral if LS𝑀,𝑔𝑡

= LS𝑀,𝑔0
. Clearly,

any trivial family is isospectral.
Remark 1.8. It will be proved later (at least in a special case, but the reason behind
the result is the same) that deformations automatically preservemarkings. Hence,
any isospectral family automatically preserves the MLS, where it is defined.

We now introduce the notion of spectral rigidity
Definition 1.9. Let 𝑀 be a smooth manifold and 𝑔 a Riemannian metric on 𝑀.
𝑔 is said to be spectrally rigid if it admits no non-trivial isospectral deformations.

The first results about rigidity appeared in the 1970’s for surfaces.
Theorem 1.10 (Guillemin, Kazhdan [20]). Let 𝑀 be a closed manifold of dimension
2 and 𝑔 be a negatively curved Riemannian metric; then 𝑔 is spectrally rigid.

The above result was generalized to arbitrary dimension in the 1990’s
Theorem 1.11 (Croke, Sharafutdinov [11]). Let 𝑀 be a closed manifold and 𝑔 be
a negatively curved Riemannian metric; then 𝑔 is spectrally rigid.

The condition of negative curvature can be slightly relaxed, but not to an ar-
bitrary extent; for instance C. Gordon and Wilson proved in [17] the existence
of 1-parameter families of isospectral Riemannian manifolds; such manifolds are
algebraic in nature and they are not “non-positively curved”.

We now proceed to introduce the proper notion of spectral determination
Definition 1.12. Let 𝑀 be a smooth manifold, 𝒢(𝑀) be a certain class of Rie-
mannian metrics on 𝑀. Then 𝑔 ∈ 𝒢(𝑀) is said to be spectrally determined in
𝒢(𝑀) if the following holds: if 𝑔′ ∈ 𝒢(𝑀) is so that MLS𝑀,𝑔 = MLS𝑀,𝑔′ , then
there exists a diffeomorphisms 𝑓 ∶ 𝑀 → 𝑀 so that 𝑔′ = 𝑓∗𝑔 (i.e. 𝑔 and 𝑔′ are
isometric).

The first notable result concerning spectral determination appeared in 1990,
and it is an independent result of Otal and Croke about negatively curved surfaces.
Theorem 1.13 (Otal [27] ⟂ Croke [10]). Let 𝑀 be a 2-dimensional manifold and
𝑔 a negatively curved metric. Then 𝑔 is spectrally determined among all negatively
curved metrics.
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The result was recently (and quite spectacularly!) generalized to arbitrary di-
mension by Guillarmou and Lefeuvre,
Theorem 1.14 (Guillarmou, Lefeuvre (and Knieper) [19, 18]).
Let 𝑀 be a 𝑛-dimensional manifold and 𝑔 a negatively curved metric. Then 𝑔 is
spectrally determined among all negatively curved metrics in a neighborhood of 𝑔.
Remark 1.15. Both above results are actually true in a slightly larger class of met-
rics that are called Anosov metrics: a metric 𝑔 is called Anosov if it a non-positive
curvature metric so that the associated geodesic flow 𝛷𝑔 is an Anosov flow.
Remark 1.16. The result by Guillarmou–Lefeuvre can be referred to as local de-
termination and it is a property of 𝑔 which is stronger than rigidity but weaker
than determination. The fact that every Anosov metric is locally determined can
be rephrased as “isospectral Anosov metrics form a discrete set” (in the natural
topology). Local determination is quite stronger than spectral rigidity: for in-
stance there exist sequences 𝑔𝑛 of metrics that converge to 𝑔, but that cannot sit
on any deformation of 𝑔.

1.6. Global, local or relative markings. In more general settings we do not
have the luxury of Proposition 1.5, and it is not clear even how to provide a mark-
ing. In other situations one might not want to use the full marking and it is
interesting to explore what can be recovered with only partial information.

A weak form of marking is to endow the Length Set with multiplicities asso-
ciated to each length (i.e. the number of distinct geodesics that share the same
length). This is well defined for systems where the number of geodesics of length
bounded by a certain constant is discrete, but fails miserably otherwise (think
about the sphere 𝑆2, or the torus T2 where geodesics come in families)

One could explore a “local” form of marking, where we only consider geodesics
traversing some neighborhood of 𝑇 1𝑀. This could be useful if additional rigid-
ity properties are assumed (e.g. analiticity) or if only a “local” statement about
isometricity (is that a word? ) is desired.

One could also explore a “relative” form of marking, in which a global topolog-
ical model is absent, but we have a homeomorphism between the “orbit spaces”
of (𝑀.𝑔) and (𝑀, 𝑔′) so that we can identify which orbit of 𝛷𝑔′ corresponds to
which orbit of 𝛷𝑔 (any two such flows are called orbit equivalent). A question in
this sense could be: which properties do 𝑔 and 𝑔′ have to satisfy for the following
to hold: 𝑔 and 𝑔′ are isometric if and only if the length of corresponding orbits
agree.

1.7. And now… billiards! The content of our lectures will focus on stating cor-
responding questions and giving some partial answers in the setting ofDynamical
billiards. A cheap definition of billiard dynamics is geodesic flow on a flat surface
with a (smooth enough) boundary, but a number of very specific problems arise
in this situation. The quantum spectral determination problem in the case of bil-
liards5 has been famously paraphrased (see [23]) by M. Kac in 1967 as: Can you

5In order for the question to be well-posed one needs to fix boundary conditions; a standard
choice is e.g. , Dirichet boundary conditions.
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hear the shape of a drum?. Using techniques similar to the ones mentioned earlier
in the work of Sunada, in 1992 C. Gordon, Webb andWolpert proved (see [16]) the
existence of domains (bounded by a piecewise-linear curve) that are isospectral
but not isometric. The question for smooth domains is still open in general. A
breakthrough result is the following theorem of Zelditch, published in 2008.
Theorem 1.17 (Zelditch [33]). Let 𝛺 and 𝛺′ be chosen among a generic class of an-
alytic domains which are axially-symmetric. Then if ΔS(𝛺) = ΔS(𝛺′), the domains
𝛺 and 𝛺′ are isometric.

The most recent available result on the Laplace problem is due to Hezari and
Zelditch:
Theorem 1.18 (Hezari, Zelditch [22]). If 𝛺 is a domain bounded by a 𝐶∞ curve
and its Laplace spectrum is the same as the spectrum of a domain bounded by an
ellipse of sufficiently small eccentricity, then 𝛺 is such an ellipse.

The standing conjecture in this field has been formulated by Sarnak in 1990:
Conjecture (Sarnak [26]). Every domain bounded by a 𝐶∞ curve is locally deter-
mined by its Laplace Spectrum.

The conjecture is still open today. There was basically no progress whatsoever
in the category of smooth domains for over 25 years. Now, however, we are in far
better shape than we were 10 years ago.

The story we are about to tell describes what happened in these 10 years.

Notations used throughout the lectures. For ℓ > 0, we denote with Tℓ =
ℝ/ℓℤ the one-dimensional torus of circumference ℓ; we also identify S1 = T2𝜋.

With 𝐶𝑟(𝑋) we denote the space of functions from 𝑋 to ℝ that are differen-
tiable 𝑟 times and with continuous 𝑟-th derivative. We denote with 𝐶∞ the space
of infinitely differentiable functions and with 𝐶𝜔 the space of real analytic func-
tions. 𝑋 is assumed to have enough structure for the definitions to make sense
(e.g. 𝐶𝑟-manifold, smooth manifold, analytic manifold)
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Lecture 2. Introduction of the main characters

We begin with the definition of the class of strongly convex domains.
Definition 2.1. Let 𝑟 ≥ 2 (or 𝑟 = ∞ or 𝑟 = 𝜔) and ℓ > 0; let 𝛾 ∶ Tℓ → ℝ2 be
an arc-length parametrization of a 𝐶𝑟 Jordan curve; assume furthermore that its
curvature nowhere vanishes (i.e. | ̇𝛾(𝑠)| = 1 and ̈𝛾(𝑠) ≠ 0 for any 𝑠 ∈ Tℓ).

The curve 𝛾 identifies a bounded domain 𝛺 ⊂ ℝ2 which we call a 𝐶𝑟 strongly
convex planar domain. We denote the set of all 𝐶𝑟 strongly convex planar domains
by ℳ𝑟.
Remark 2.2. A strongly convex domain 𝛺 is, in particular, strictly convex, but
there exist smooth strictly convex domains that are not strongly convex (for in-
stance, an oval with a “flat spot” where the curvature vanishes).
Exercise 2.3. Show that for any 𝜃 ∈ S1 there exists a unique 𝑠 ∈ Tℓ so that
̇𝛾(𝑠) forms an angle 𝜃 with the positive horizontal semi-axis. Show that the map

𝜃 ∶ Tℓ → S1 is a 𝐶𝑟−1 diffeomorphism (Hint: show that 𝜃′(𝑠) = | ̈𝛾(𝑠)| for any
𝑠 ∈ Tℓ).

Using the above parametrization, the space ℳ𝑟 can be equipped with a natural
metric: each domain 𝛺 can be uniquely represented as a 𝐶𝑟−1-function 𝛾 ∶ S1 →
ℝ2 parametrizing its boundary. We can thus define naturally:

𝑑(𝛺0, 𝛺1) = ‖𝛾0 − 𝛾1‖𝐶𝑟−1

2.1. Birkhoff billiards. Billiards inside convex domains were first introduced in
the 1920’s by George David Birkhoff.6 Birkhoff introduced such systems in [6].

Let 𝛺 ∈ ℳ𝑟, with 𝑟 ≥ 3: we call 𝛺 the Billiard Table. Let 𝑋𝛺 = 𝜕𝛺 × [0, 𝜋]
(consider it as a 𝐶𝑟 manifold with boundary): we call 𝑋𝛺 the phase space of the
billiard in 𝛺. For any 𝑧 = (𝑥, 𝜓) ∈ 𝑋𝛺, consider the oriented line 𝛬(𝑥, 𝜓) passing
through 𝑥 ∈ 𝜕𝛺 and forming an angle 𝜓 (measured counterclockwise) with the
positively oriented tangent vector to 𝜕𝛺 at 𝑥. We let 𝑥′ denote the unique7 other
point of intersection of 𝛬(𝑥, 𝜓) with 𝜕𝛺 and 𝜓′ the angle (measured clockwise)
between the line and the positively oriented tangent vector to 𝜕𝛺 at 𝑥′ (if 𝜓 = 0
or 𝜓 = 𝜋, we let 𝑥′ = 𝑥 and 𝜓′ = 𝜓).

If we imagine that a point particle is emitted from 𝑥 in the direction identified
by the angle 𝜓, then its trajectory will follow along the line 𝛬(𝑥, 𝜓) until the
particle hits 𝜕𝛺; then it will undergo elastic reflection and its trajectory would
follow the line 𝛬(𝑥′, 𝜓′) until the next collision.
Definition 2.4. Themap 𝑇𝛺 ∶ 𝑋𝛺 → 𝑋𝛺 given by 𝑇𝛺(𝑥, 𝜓) ↦ (𝑥′, 𝜓′) is called
the Billiard map associated to 𝛺.
Exercise 2.5. Show that 𝛬(𝑥, 𝜓) and 𝛬(𝑥′, 𝜋 −𝜓′) are the same line with opposite
orientation. Let ℐ ∶ 𝑋𝛺 → 𝑋𝛺 be the idempotent map ℐ ∶ (𝑥, 𝜓) ↦ (𝑥, 𝜋 − 𝜓);
then show that 𝑇𝛺 ∘ 𝐼 = 𝐼 ∘ 𝑇 −1

𝛺 . We call ℐ the involution map.
Remark 2.6. Notice that we are asking 𝑟 ≥ 3 in the definition of a billiard table.
The reason why we need some extra smoothness is to guarantee certain basic
properties of the Billiard dynamics. For example, it is possible to construct a 𝐶2

6It is the same Birkhoff as the Birkhoff Ergodic Theorem
7Uniqueness follows from convexity of 𝛺

https://en.wikipedia.org/wiki/George_David_Birkhoff
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domain 𝛺 with the property that there is an orbit that accumulates on a point
( ̄𝑥, 0) ∈ 𝑋𝛺. In particular, on such a domain, there exists a billiard trajectory of
finite length, i.e. the billiard flow would be incomplete.
Exercise 2.7. It is a nice exercise to construct an example of a domain with the
properties described in Remark 2.6: you really just need to construct a small arc
of 𝜕𝛺 around the accumulation point…

For the remainder of this part, we fix some 𝛺 and drop it from our notation. Let
ℓ = |𝜕𝛺| the perimeter of 𝛺 and let us fix 𝛾 to be an arc-length parametrization
of 𝜕𝛺.8 We let 𝒳ℓ = Tℓ × [0, 𝜋]; then 𝛾 × Id is a 𝐶𝑟 diffeomorphism from 𝒳ℓ to
𝑋𝛺. We denote with 𝒯 the billiard map in these coordinates 𝒯 ∶ 𝒳ℓ → 𝒳ℓ, by
�̂�ℓ = ℝ×[0, 𝜋] a lift of 𝒳ℓ and by �̂� ∶ �̂�ℓ → �̂�ℓ the lift of 𝒯 which fixes ℝ×{0}
and ℝ × {𝜋} (i.e. so that �̂�(𝑠, 0) = (𝑠, 0) and �̂�(𝑠, 𝜋) = (𝑠, 𝜋) for any 𝑠 ∈ ℝ).

2.2. Generating function. Let 𝐿 ∶ 𝜕𝛺 × 𝜕𝛺 → ℝ be the continuous map:

𝐿(𝑥, 𝑥′) = dist(𝑥, 𝑥′)

where dist(·, ·) denotes the standard Euclidean distance in ℝ2. We also define
ℒ ∶ Tℓ × Tℓ → ℝ as ℒ(𝑠, 𝑠′) = 𝐿(𝛾(𝑠), 𝛾(𝑠′)); notice that ℒ is as smooth as 𝜕𝛺
except on the diagonal 𝛥 = {(𝑠, 𝑠) s.t. 𝑠 ∈ Tℓ} ⊂ 𝒳ℓ × 𝒳ℓ.
Exercise 2.8. Show that

𝜕1ℒ(𝑠, 𝑠′) = − cos(𝜓) 𝜕2ℒ(𝑠, 𝑠′) = cos(𝜓′)

where 𝜕𝑖 denotes the partial derivative with respect to the 𝑖-th component and
𝜓 (resp. 𝜓′) is the angle that the segment 𝛾(𝑠)𝛾(𝑠′) makes with the positively
oriented tangent vector to 𝜕𝛺 at the point identified by 𝑠 (resp. 𝑠′).
Exercise 2.9. Show moreover that

𝜕12ℒ(𝑠, 𝑠′) < 0

It is customary to introduce coordinates (𝑠, 𝑟) on 𝒳ℓ, where 𝑟 = − cos(𝜓) ∈
[−1, 1]; the function9 −ℒ is called the generating function of the billiard map 𝒯
in these coordinates10, in the sense that

𝒯(𝑠, 𝑟) = (𝑠′, 𝑟′) ⟺ { 𝑟 = −𝜕1ℒ(𝑠, 𝑠′)
𝑟′ = 𝜕2ℒ(𝑠, 𝑠′)

An immediate consequence of the existence of a generating function is the fol-
lowing result:
Lemma 2.10. The map 𝒯 is area-preserving in (𝑠, 𝑟) coordinates.

Proof. Compute the differential of ℒ:

𝑑ℒ = −𝑟𝑑𝑠 + 𝑟′𝑑𝑠′

8To fix ideas we can choose it so that �̇�(0) is the unit vector (1, 0) (but this choice is rather
arbitrary).

9The choice of sign is –arguably– purely conventional, but with this choice of sign, the gener-
ating function has the same features as the physical action.

10Such maps are called twist maps
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This implies that the 1-form 𝛼 = 𝑟𝑑𝑠 is 𝒯-invariant modulo total differentials, i.e.
𝒯∗𝛼 = 𝛼′ − 𝑑ℒ. By differentiating once again this expression we conclude that
the 2-form 𝑑𝛼 = 𝑑𝑟 ∧ 𝑑𝑠 is 𝒯-invariant, which concludes the proof.

Alternatively, we can just perform the simple computation of the Jacobian ma-
trix

𝜕𝑠′

𝜕𝑠
= −[𝜕12ℒ]−1𝜕11ℒ 𝜕𝑠′

𝜕𝑟
= −[𝜕12ℒ]−1

𝜕𝑟′

𝜕𝑠
= 𝜕12ℒ − [𝜕12ℒ]−1𝜕11ℒ · 𝜕22ℒ 𝜕𝑟′

𝜕𝑟
= −[𝜕12ℒ]−1𝜕22ℒ,

which immediately implies that the determinant is 1. �

In (𝑠, 𝜓) coordinates the invariant area form is written as

𝑑Liouv = sin𝜓𝑑𝑠 ∧ 𝑑𝜓(2.1)

it is also called the Liouville measure of the billiard map
Generating functions are particularly useful to show existence of periodic points

for the billiard map.
Definition 2.11. A point 𝑧 = (𝑥, 𝜓) ∈ 𝑋𝛺 is said to be 𝑞-periodic if 𝑇 𝑞𝑧 = 𝑧;
notice that if 𝑧 is 𝑞-periodic, then it is also 𝑘𝑞-periodic for any 𝑘 ∈ ℕ. We call
prime period of 𝑧 the smallest 𝑞 so that 𝑇 𝑞𝑧 = 𝑧. If 𝑧 ∈ 𝒳ℓ is periodic of prime
period 𝑞, let ̃𝑧 ∈ ℝ × [0, 𝜋] be a lift of 𝑧; then �̂� ̃𝑧 = ̃𝑧 + (𝑝ℓ, 0) for some 𝑝 ∈ ℤ;
we call 𝑝 the winding number of 𝑧 and the ratio 𝜔 = 𝑝/𝑞 the rotation number of 𝑧.
Remark 2.12. The rotation number is a topological invariant of a periodic orbit,
in the sense that if two billiard maps are topologically conjugate, then a periodic
orbit of rotation number 𝜔 is mapped by the conjugacy to a periodic orbit of the
same rotation number.

For any 𝑞 > 1, let 𝐿𝑞 ∶ 𝜕𝛺𝑞 → ℝ defined as:

𝐿𝑞(𝑥0, ⋯ , 𝑥𝑞−1) =
𝑞−1

∑
𝑗=0

𝐿(𝑥𝑗, 𝑥𝑗+1 mod 𝑞).

The function 𝐿𝑞 maps an ordered 𝑞-tuple of points on 𝜕𝛺 to the perimeter of the
polygon inscribed in 𝛺 that is obtained by connecting the points respecting their
order in the 𝑞-tuple. We also define ℒ𝑞 ∶ T𝑞

ℓ → ℝ given by:

ℒ𝑞(𝑠0, ⋯ , 𝑠𝑞−1) = 𝐿𝑞(𝛾(𝑠0), ⋯ , 𝛾(𝑠𝑞−1)).

Definition 2.13. For any 𝑞 ∈ ℤ≥2 define the open set

T̂𝑞
ℓ = {(𝑠0, ⋯ , 𝑠𝑞−1) ∈ T𝑞

ℓ s.t. 𝑠𝑗 ≠ 𝑠𝑗+1 mod 𝑞 for any 𝑗}

and correspondingly:

𝑏𝛺𝑞 = {(𝛾(𝑠0), ⋯ , 𝛾(𝑠𝑞−1)) s.t. (𝑠0, ⋯ , 𝑠𝑞−1) ∈ T̂𝑞
ℓ} ⊂ 𝜕𝛺𝑞.
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Observe that ℒ𝑞 is smooth on T̂𝑞
ℓ ; observe moreover that if a billiard orbit

s ∈ T̂𝑞, then it is necessarily the trivial orbit i.e. (𝑠0, ⋯ , 𝑠𝑞−1) is so that 𝑠0 =
𝑠1 = ⋯ = 𝑠𝑞−1.
Exercise 2.14. Let 𝑧 ∈ 𝒳ℓ and define 𝑧𝑗 = (𝑠𝑗, 𝜓𝑗) = 𝒯𝑗𝑧 for 0 ≤ 𝑗 < 𝑞. Prove
that 𝑧 is 𝑞-periodic if and only if 𝑑ℒ𝑞 = 0, i.e. 𝜕𝑗ℒ𝑞(𝑠0, ⋯ , 𝑠𝑞−1) = 0 for every
0 ≤ 𝑗 < 𝑞. (Hint: Use Exercise 2.8).

We can now give a variational characterization of the length spectrum:

LS(𝛺) = ⋃
𝑞

Critical Values of ℒ𝑞.

The above allows to easily prove the following
Theorem 2.15. The Length spectrum of a convex billiard has Lebesgue measure
zero.

Proof. Sard’s Lemma states that the set of critical values of a 𝐶𝑛 real-valued func-
tion on a 𝑑-dimensional manifold has measure zero provided that 𝑛 ≥ 𝑑. This
immediately implies the result if 𝑟 = ∞, by applying Sard’s Lemma to the 𝐶∞-
functions ℒ𝑞 for arbitrary 𝑞. If 𝑟 < ∞, we can argue as follows:

For any 𝑞, let 𝛩𝑞 ∶ T2
ℓ → T𝑞

ℓ be the map that sends (𝑠0, 𝑠1) to the 𝑞-tuple
(𝑠0, 𝑠1, ⋯ , 𝑠𝑞−1) obtained by collecting the next 𝑞 − 2 collision points of the bil-
liard trajectory passing through the initial pair (𝑠0, 𝑠1). Notice that the map 𝛩𝑞
is as smooth as the billiard map, hence it is 𝐶𝑟−1. We now define the auxiliary
map

ℒ∗
𝑞(𝑠0, 𝑠1) = ℒ𝑞(𝛩𝑞(𝑠0, 𝑠1)).

Then, the set of critical values of ℒ𝑞 is the same as the set of critical values of ℒ∗
𝑞;

the latter is a real-valued 𝐶𝑟−1 function of a 2-dimensional manifold; hence the
result follows provided that 𝑟 ≥ 3. �

2.3. Existence of periodic orbits. Here we show existence of periodic orbits
of arbitrary (rational) rotation number. We begin by collecting some preliminary
information about the set T̂𝑞

ℓ . Given (𝑠0, 𝑠1, ⋯ 𝑠𝑞−1) ∈ T̂𝑞
ℓ , we denote with 𝛼𝑖 ⊂

Tℓ the positively oriented open arc joining 𝑠𝑖 with 𝑠𝑖+1 mod 𝑞.
Lemma 2.16. Fix 𝑞 ≥ 2; for any s = (𝑠0, 𝑠1, ⋯ , 𝑠𝑞−1) ∈ T̂𝑞

ℓ there exists a (unique)
𝑝 ∈ {1, ⋯ , 𝑞 − 1} so that ∀𝑠 ∈ Tℓ ∖ {𝑠0, 𝑠1, ⋯ , 𝑠𝑞−1} belongs to exactly 𝑝 arcs 𝛼𝑖.
Moreover, the map s ↦ 𝑝 is constant on each connected component of T̂𝑞

ℓ .

Proof. For simplicity, let us assume that ℓ = 1 throughout this proof and denote
T = T1. Let 𝛹s ∶ T → T be a continuous function that maps each circle arc
[𝑗/𝑞, (𝑗 + 1)/𝑞] (homeomorphically and preserving orientation) to the closed arc

̄𝛼𝑗 ⊂ T. Themap 𝛹s is a continuous circle map: let 𝑝 denote its topological degree.
We claim that 𝑝 ∈ {1, ⋯ , 𝑞 − 1}: in fact let ̃𝛹s ∶ ℝ → ℝ be a lift of 𝛹s; then

𝑝 = deg𝛹s = ̃𝛹s(1) − ̃𝛹s(0) =
𝑞−1

∑
𝑗=0

̃𝛹s((𝑗 + 1)/𝑞) − ̃𝛹s(𝑗/𝑞) =
𝑞−1

∑
𝑗=0

|𝛼𝑗|,
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where |𝛼𝑗| denotes the length of the arc 𝛼𝑗. Since, by construction 0 < |𝛼𝑗| < 1,
we conclude that 0 < 𝑝 < 𝑞, which proves the claim. The above formula also
implies that the map x ↦ 𝑝 is continuous in T̂𝑞, since for any 𝑗, the map x ↦ |𝛼𝑗|
is continuous in T̂𝑞. Since 𝑝 assumes only integer values and is continuous, we
gather that 𝑝 is constant on each connected component of T̂𝑞. �

Definition 2.17. Let 𝑞 ∈ ℤ≥2 and 𝑝 ∈ {1, ⋯ , 𝑞 − 1}; then define

T̂𝑝,𝑞
ℓ = {s = (𝑠0, 𝑠1, ⋯ , 𝑠𝑞−1) ∈ T̂𝑞

ℓ s.t. 𝑝(s) = 𝑝}.

Observe that if (𝑠0, ⋯ , 𝑠𝑞−1) ∈ T̂𝑝,𝑞
ℓ identifies a 𝑞-periodic point, then it is

necessarily a periodic point of rotation number 𝑝/𝑞: in fact, 𝑝 is, by definition,
the winding number of the orbit. For any 𝑠 ∈ T, then, we let
Lemma 2.18. For any 𝜔 ∈ ℚ ∩ (0, 1/2] there exists at least one periodic point of
rotation number 𝜔.

Proof. The lemma follows from a simple variational argument: let 𝜔 = 𝑝/𝑞 in
lowest order. Notice that ℒ𝑞 is (uniformly) continuous on the closure T̂𝑝,𝑞

ℓ and
–as noticed earlier– smooth on T̂𝑝,𝑞

ℓ . In particular, the restriction ℒ𝑞|T̂𝑝,𝑞
ℓ

has a

maximum, attained for s̄ = ( ̄𝑠0, ⋯ , ̄𝑠𝑞−1). We claim that s̄ ∉ 𝜕T̂𝑝,𝑞
ℓ,𝑠 : in fact,

assume otherwise by contradiction. By definition, 𝜕T̂𝑝,𝑞
ℓ ⊂ 𝜕T̂𝑞

ℓ ; hence for some 𝑗
we would have ̄𝑠𝑗 = ̄𝑠𝑗+1, but this contradicts the fact that s̄ is a maximum, since
separating ̄𝑠𝑗 from ̄𝑠𝑗+1 would increase the length of the inscribed polygon (by
the strict convexity of 𝜕𝛺). We conclude that s̄ is an interior maximum and thus

𝑑ℒ𝑞( ̄s) = 0
which, by definition, implies that ̄s is a periodic orbit. By earlier considerations
we gather that its rotation number is 𝑝/𝑞. �

Remark 2.19. The periodic orbits obtained by means of the above argument are
called maximal or Aubry-Mather or action minimizer.
Remark 2.20. A celebrated refinement of the above result due to Birkhoff [6, 7]
shows that indeed there exist at least 2 distinct periodic orbits for each rotation
number; the other orbits are sometimes calledminimax orbits. Birkhoff’s result is
sharp (e.g. a billiard on an ellipse has exactly 2 periodic orbits of rotation number
1/2).
Remark 2.21 (Factoids about periodic orbits). It is entirely possible that a domain
has more than 2 periodic orbit of given rotation number. In fact there can be arbi-
trarily many (e.g. finitely many, infinitely many, 1-parameter families.11) Observe
that 1-parameter families of periodic orbits have necessarily the same length, but
there are also examples of domains with a Cantor set of periodic orbits of the same
rotation number, whose lengths also form a Cantor set12.

11Remarkably, the presence of such “degenerate” families of periodic orbits can also be detected
in the Wave Trace Formula.

12I am preparing a paper about this fact: such domains are in fact 𝐶∞-dense
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Here is an interesting collection of facts about a particular class of 1-parameter
families called caustics.

• A disk is such that any inscribed regular (possibly non-convex) polygon
draws the trajectory of a periodic orbit. For the disk we thus have “com-
plete” 1-parameter families of periodic orbits of any rational rotation num-
ber. Complete means that the family is parametrized by T1; such families
are also called resonant caustics. In fact this is an if and only if (see [4]).

• An ellipse has resonant caustics of any rotation number except 𝜔 = 1/2.
• All curves of constant width have a resonant caustic for rotation number

1/2.
• There is a 𝐶∞-dense set of domains with the property that there exists a

resonant caustic of rotation number 1/𝑞 for some 𝑞 (see [24]).
• It is not known if there is a non-elliptic domain which admits more than

1 resonant caustics (except, of course ) .
• Every (sufficiently smooth13) domain close to a diskwhich admits resonant

caustics for every rotation number 1/𝑞 where 𝑞 > 2 is an ellipse (see [2]).
• Every centrally symmetric 𝐶2 domain which admits resonant caustics for

every rotation number in ℚ ∩ (0, 1/4] is an ellipse (see [5]).
Problems concerning the abundance of resonant caustics go under the umbrella

term of Birkhoff–Poritsky conjecture. This is arguably among the most important
conjectures in (low-dimensional) dynamics. In this language it could be stated as:
Conjecture (Birkhoff–Poritsky [29]). Assume that 𝛺 is so that there exists an open
set 𝑈 ⊂ (0, 1/2) such that for any 𝜔 ∈ ℚ ∩ 𝑈 there exists a resonant caustic of
rotation number 𝜔. Then 𝛺 is an ellipse.

The conjecture is wide open.
··––····––··

2.4. Spectral Rigidity questions. In this section we list some natural questions
that arise for Birkhoff billiards; the most challenging is:
Question. Assume that LS(𝛺) = LS(𝛺′); is it true that 𝛺 is isometric to 𝛺′?

It is not completely clear whether or not the above should be true; we can
paraphrase Sarkak’s conjecture:
Conjecture (Sarnak [26]). For any 𝛺 ∈ ℳ∞, the set of 𝛺′ that are isospectral to
𝛺 is discrete (modulo isometries).

As mentioned in Remark 2.12, rotation numbers can serve as a marking for
the Length Spectrum, but the non-uniqueness described in the previous section
means that the corresponding map MLS ∶ ℚ ∩ (0, 1/2] → ℝ>0 may be multi-
valued; we can then extract a single valued function by considering the maximal
Marked Length Spectrum:

MMLS ∶ 𝜔 ↦ maxMLS(𝜔)
and ask
Question. Assume that MMLS𝛺 = MMLS𝛺′ ; is it true that 𝛺 is isometric to 𝛺′?

13OK, this is embarassing: we need 𝐶39.

https://en.wikipedia.org/wiki/Curve_of_constant_width


DYNAMICAL SPECTRAL DETERMINATION AND RIGIDITY 15

Of course we can even ask the same question for MLS itself
Question. Assume that MLS𝛺 = MLS𝛺′ ; is it true that 𝛺 is isometric to 𝛺′?

An even weaker conjecture assumes that the billiard maps 𝑇𝛺 and 𝑇𝛺′ associ-
ated to domains 𝛺 and 𝛺′ are 𝐶0-conjugate (recall that we mentioned “relative
markings” in Lecture 1).
Question. Assume that the length of a periodic orbit in 𝛺 equals the length of
the corresponding periodic orbit in 𝛺′; is it true that 𝛺 is isometric to 𝛺′?

In fact, Guillemin conjectured that a𝐶0-conjugacy of the billiardmaps is enough
to imply that two domains are homothetic. The conjecture is still open. If con-
jecture were true, then the above question would of course have an affirmative
answer.

··––····––··
Stepping aside from determination questions, and embracing the more acces-

sible spectral rigidity questions, let us give a definition:
Definition 2.22. A domain 𝛺 is said to be spectrally rigid (within a certain class)
if any smooth isospectral family of domains 𝛺𝑡 in the class is necessarily a trivial
(i.e. isometric) family.
Question. Is it true that any smooth strongly convex domain is spectrally rigid?

An affirmative answer to the above question would be a step forward Sarnak’s
conjecture, but it would not imply it directly.
Exercise 2.23. LetD be the unit disk. Construct a sequence 𝛺𝑛 of domains in ℳ∞

with the property that 𝛺𝑛 → D in the natural topology, but there is no smooth
deformation 𝛺𝑡 of D so that there exists 𝑡𝑛 → 0 and 𝛺𝑛 = 𝛺𝑡𝑛

.
We will study (in Lecture 4) the proof of the following result:

Theorem 2.24 (—, Kaloshin, Wei [14]). Consider the class of 𝐶8 axially-symmetric
domains; then a domain 𝛺 that is sufficiently close to a disk is spectrally rigid (in
the class of 𝐶8 axially-symmetric domains).

Lecture 3. Dispersing billiards and Lyapunov exponents

The class of hyperbolic billiards was considered a bit later in the game; the
study of their ergodic properties was pioneered by Yakov Grigorevich Sinai and
a particularly representative class of systems is called Sinai billiards. We here
work with a related class of hyperbolic billiards which are called open dispersing
billiards.
Definition 3.1. Let 𝑟 > 3 (or 𝑟 = ∞, or 𝑟 = 𝜔), 𝑁 > 2 and (𝒪𝑖)𝑁−1

𝑖=0 be a finite,
pairwise disjoint collection of 𝐶𝑟 strongly convex domains, i.e. 𝒪𝑖 ∈ ℳ𝑟 which
we call scatterers. We further assume the non-eclipse condition, that is: for any
𝑖 ≠ 𝑗 ≠ 𝑘, 𝑖, 𝑗, 𝑘 ∈ {0, ⋯ , 𝑁 − 1} we require that Hull(𝒪𝑖 ∪ 𝒪𝑗) ∩ 𝒪𝑘 = ∅. Then
we call the unbounded region 𝛺 = ℝ2 ∖ ⋃𝑁−1

𝑖=0 𝒪𝑖 a open dispersing billiard table,
or hyperbolic billiard Table. We denote the set of all 𝐶𝑟 hyperbolic billiard tables
with 𝑁 scatterers by ℬ𝑁,𝑟

H

https://en.wikipedia.org/wiki/Yakov_Sinai
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Let us denote with 𝒩 = {0, ⋯ , 𝑁 − 1}; we define the phase space 𝑋𝛺 as the
disjoint union

𝑋𝛺 = ⨆
𝑖∈𝒩

𝜕𝒪𝑖 × [−𝜋/2, 𝜋/2];

Here the standard coordinates (𝑥, 𝜑) identify a point on the boundary of some
scatterer and the angle 𝜑, which we measure with respect to the normal at 𝑥
pointing inside the domain (i.e. outside of the scatterer) and so that angle −𝜋/2
corresponds to the positively oriented tangent.

We define 𝜄 ∶ 𝑋𝛺 → 𝒩 to be the map that sends each point (𝑥, 𝜑) to the index
𝑖 of the scatterer 𝒪𝑖 so that 𝑥 ∈ 𝜕𝒪𝑖.

Given 𝑧 = (𝑥, 𝜑) ∈ 𝑋𝛺, let 𝛬(𝑥, 𝜑) be the oriented line passing through 𝑥 and
making an angle 𝜑 with the positively oriented tangent vector at 𝑥; let 𝑖 be the
index of the scatterer 𝒪𝑖 so that 𝑥 ∈ 𝜕𝒪𝑖. By the non-eclipse condition, the line
𝛬 will intersect at most one of the other scatterers. Let

𝑋+
𝛺 = {𝑧 ∈ 𝑋𝛺 s.t. 𝛬(𝑧) intersects another scatterer}.

For (𝑥, 𝜑) ∈ 𝑋+
𝛺, we let𝑥′ be the point of intersection of𝛬with the other scatterer

that is closest to 𝑥. 14 We let 𝜑′ be the angle that 𝛬 forms with the positively
oriented vector tangent to 𝜕𝛺 at 𝑥′. Then we can define the billiard map:
Definition 3.2. Themap 𝑇𝛺 ∶ 𝑋+

𝛺 → 𝑋𝛺 given by 𝑇𝛺(𝑥, 𝜑) ↦ (𝑥′, 𝜑′) is called
the Billiard map associated to 𝛺.

We denote with 𝑋−
𝛺 = 𝑇𝛺𝑋+

𝛺 ⊂ 𝑋𝛺. For 𝑖, 𝑗 ∈ 𝒩 and 𝑖 ≠ 𝑗, we define

𝐿𝑖𝑗 ∶ 𝜕𝒪𝑖 × 𝜕𝒪𝑗 → ℝ>0

to be the Euclidean distance 𝐿𝑖𝑗(𝑥, 𝑥′) = dist(𝑥, 𝑥′); let ℓ𝑖 = |𝜕𝒪𝑖| and assume
we fixed arc-length parametrizations 𝛾𝑖 ∶ Tℓ𝑖

→ 𝜕𝒪𝑖. Notice that since 𝛺 is in
the outside of each scatterer, we take parametrizations to be oriented clockwise.

Then, similarly as before, we define

ℒ𝑖𝑗(𝑠, 𝑠′) = 𝐿(𝛾𝑖(𝑠), 𝛾𝑗(𝑠′)).

The collection of functions ℒ·· serve as generating functions15 for the dynamics,
in the sense that, taking 𝑟 = sin𝜑:

𝒯(𝑠, 𝑟) = (𝑠′, 𝑟′) ⟺ { 𝑟 = 𝜕1ℒ𝑖𝑗(𝑠, 𝑠′)
𝑟′ = −𝜕2ℒ𝑖𝑗(𝑠, 𝑠′),

where 𝑖 = 𝜄(𝑠) (resp. 𝑗 = 𝜄(𝑠′)). For 𝑖 ≠ 𝑗 with 𝑖, 𝑗 ∈ 𝒩, we say that (𝑠, 𝑠′) ∈
Tℓ𝑖

× Tℓ𝑗
is admissible if the segment 𝛾𝑖(𝑠𝑖)𝛾𝑗(𝑠𝑗) is disjoint from the interior of

𝒪𝑖 and 𝒪𝑗. Let 𝐴𝑖𝑗 ⊂ Tℓ𝑖
× Tℓ𝑗

be the set of admissible pairs.
Exercise 3.3. Prove the following facts:

14Observe that, by convexity of the scatterers, there are at most 2 points of intersection of any
line with the boundary of any scatterer.

15Notice that there is a difference of sign with respect to Birkhoff billiards; this is due to the fact
that we reverse orientations
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• let (𝑠, 𝑠′) ∈ 𝜕𝐴𝑖𝑗; then the segment 𝛾𝑖(𝑠)𝛾𝑗(𝑠′) is tangent to at least one
of the scatterers 𝒪𝑖 or 𝒪𝑗.

• if (𝑠, 𝑠′) ∈ int𝐴𝑖𝑗, then the Hessian of ℒ𝑖𝑗 is positive definite at (𝑠, 𝑠′).

3.1. Marking. Let us define the sets

𝛴𝑞 = {𝜎 ∈ 𝒩𝑞 s.t. 𝜎𝑘 ≠ 𝜎𝑘+1 mod 𝑞}
𝛴 = {𝜎 ∈ 𝒩ℤ s.t. 𝜎𝑘 ≠ 𝜎𝑘+1}

For 𝜎 ∈ 𝛴𝑞, let

𝐴𝜎 = {s ∈ Tℓ𝜎0
× Tℓ𝜎1

× ⋯ × Tℓ𝜎𝑞−1
s.t. (𝑠𝑗, 𝑠𝑗+1) ∈ 𝐴𝜎𝑗𝜎𝑗+1

for any 𝑗 = 0, ⋯ , 𝑞 − 1}

Proposition 3.4. Let 𝜎 ∈ 𝛴𝑞; there exists a unique 𝑞-periodic point 𝑧 = 𝑧(𝜎) ∈
𝑋𝛺 so that 𝜄(𝑇 𝑛𝑧) = 𝜎𝑛 mod 𝑞.

Proof. For 𝜎 ∈ 𝛴𝑞, let us define the function ℒ𝜎 ∶ Tℓ𝜎0
×Tℓ𝜎1

×⋯×Tℓ𝜎𝑞−1
→ ℝ>0

given by:

ℒ𝜎 ∶ (𝑠0, 𝑠1, ⋯ , 𝑠𝑞−1) =
𝑞−1

∑
𝑗=0

ℒ𝜎𝑗𝜎𝑗+1 mod 𝑞
(𝑠𝑗, 𝑠𝑗+1 mod 𝑞).

The restriction ℒ𝜎|𝐴𝜎
is a smooth function on a compact set; by Exercise 3.3,

the function is strictly convex, and as such it admits a unique global minimum
̄s = ( ̄𝑠0, ⋯ , ̄𝑠𝑞−1) ∈ 𝐴𝜎. If we show that s̄ ∉ 𝜕𝐴𝜎, we conclude that s̄ identifies
points on 𝜕𝛺 with the property that the polygon with these points as vertices is
so that each angle at such vertices is bisected by the normal to 𝜕𝛺 at the collision
point. The proof then follows from an argument by contradiction… �

Exercise 3.5. Complete the missing details in the above proof.
Remark 3.6. The uniqueness stated above is analogous to the statement in Geom-
etry about uniqueness of the geodesic corresponding to a given free homotopy
class. The number of scatterers 𝑁 corresponds to a “topological type” of billiard.
The shift map 𝜎 = (𝜎𝑘)𝑘∈ℤ ↦ 𝜎′ = (𝜎𝑘+1)𝑘∈ℤ serves as a topological model for
the billiard map.

We can define a natural notion of distance on 𝛴 by means of:

𝑑(𝜎, 𝜎′) = exp(−max{𝑘 ∈ ℤ s.t. 𝜎𝑙 = 𝜎′
𝑙 for all |𝑙| ≤ 𝑘})

(and 𝑑(𝜎, 𝜎′) = 0 if 𝜎 = 𝜎′). With the topology induced by this distance 𝛴 is a
Cantor set. There is a natural map 𝛴𝑞 → 𝛴 given by

(𝜎𝑗)
𝑞−1
𝑗=0 ↦ (𝜎𝑗 mod 𝑞)𝑗∈ℤ.

Now let 𝛴per = ⋃𝑞>1 𝛴𝑞, which we regard as a subset of 𝛴;
Lemma 3.7. The map 𝜎 ↦ 𝑧(𝜎) defined by Proposition 3.4 on 𝛴per is uniformly
continuous, and can be extended to a map on 𝛴.

The image on 𝑋 of the map above is a (homeomorphic image of a) Cantor set
identifying all points in phase space that correspond to orbits that never escape
to ∞.
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··––····––··
We can now define the Marked Length Spectrum as follows. By Proposition 3.4,

there is a 1-1 correspondence between periodic orbits for the billiard 𝛺 and ele-
ments of 𝛴per. We thus define

MLS𝛺 ∶ 𝛴per → ℝ>0

to be the map that sends a sequence 𝜎 to the length ℒ𝜎( ̄𝑠0, ⋯ , ̄𝑠𝑞−1) of the unique
billiard orbit corresponding to 𝜎. The length spectrum of 𝛺 is just the image
MLS𝛺(𝛴per) ⊂ ℝ>0; it can be identified once again as a subset of the set of critical
values of some functions. However, since 𝛴per is countable, we conclude that for
an hyperbolic billiard, LS(𝛺) is also countable. It is actually very easy to show
that it is discrete:
Lemma 3.8. Let 𝛺 ∈ ℬ𝑁,𝑟

H , then for any 𝐿 > 0 the set LS(𝛺) ∩ [0, 𝐿] is finite. In
particular LS(𝛺) is discrete.

Proof. Let

𝑙 = min
𝑖,𝑗∈𝒩

min
𝑥∈𝜕𝒪𝑖,𝑥′∈𝜕𝒪𝑗

𝐿𝑖𝑗(𝑥, 𝑥′) = min LS(𝛺);

then any periodic orbit of prime period 𝑞 has length at least 𝑞𝑙; we conclude that
MLS𝛺𝛴𝑞 ⊂ [𝑞𝑙, ∞); hence

#(LS(𝛺) ∩ [0, 𝐿]) ≤
𝐿/𝑙

∑
𝑞=2

#𝛴𝑞 < ∞. �

Exercise 3.9. Given𝜎 = (𝜎0, ⋯ , 𝜎𝑞−1) ∈ 𝛴𝑞, we define �̄� = (𝜎0, 𝜎𝑞−1, 𝜎𝑞−2 ⋯ 𝜎1).
Show that the orbit corresponding to 𝜎 and �̄� are the images of each other by the
involution ℐ.

3.2. Questions about spectral determination. A naïve spectral determination
question would be as follows:
Question. Let𝛺, 𝛺′ ∈ ℬ𝑁,𝑟

H so thatMLS𝛺 = MLS𝛺′ ; is it true that𝛺 is isometric
to 𝛺′?

The answer to this question is negative, for a very good reason: let 𝐻 =
Hull(⋃𝑗∈𝒩 𝒪𝑗); note that by the strict convexity of the scatterers and the non-
eclipse condition, we have necessarily that 𝜕𝐻 ∩ ⋃𝑗∈𝒩 𝜕𝒪𝑗 is not empty, and
moreover it contains a non-trivial arc of 𝜕𝒪𝑗 for any 𝑗 ∈ 𝒩. Let us call this arc the
dark side of the scatterer 𝒪𝑗 and denote it with 𝛼𝛥

𝑗 . Then let 𝑥 ∈ 𝜕𝐻 ∩ ⋃𝑗∈𝒩 𝜕𝒪𝑗:
by construction, any half-line issued from 𝑥 with any angle 𝜑 will not intersect 𝐻
(and thus any of the 𝒪𝑗’s); in particular, the billiard map is not defined at (𝑥, 𝜑)
for any 𝜑 and no periodic orbit can have 𝑥 as a collision point. We conclude that
any scatterer can be arbitrarily perturbed on their dark side without modifying
The (Marked) Length Spectrum of 𝛺.
Remark 3.10. For any 𝑖, 𝑗 ∈ 𝒩, with 𝑖 ≠ 𝑗, let 𝑅𝑖𝑗 be the shortest line segment
connecting 𝜕𝒪𝑖 with 𝜕𝒪𝑗; let 𝑥𝑖𝑗 be 𝑅𝑖𝑗 ∩ 𝜕𝒪𝑖 be the foot of 𝑅𝑖𝑗 on 𝜕𝒪𝑖. Then
(𝑥𝑖𝑗)𝑗≠𝑖 partitions 𝜕𝒪𝑖 in 𝑁 − 1 (open) arcs; only one of them contains the “dark
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side” 𝛼𝛥
𝑖 of 𝒪𝑖; let us denote this arc by ̂𝛼𝛥

𝑖 . It can be shown that any orbit that
collides with any point on ̂𝛼𝛥

𝑖 will eventually (in the past or in the future) fly off
to ∞. We conclude that no periodic orbit visits ̂𝛼𝛥

𝑖 and thus that any scatterer can
be arbitrarily perturbed on ̂𝛼𝛥

𝑖 without modifying the (Marked) Length Spectrum
of 𝛺.

Let us define the set

𝛽𝑖 = {𝑥 ∈ 𝜕𝒪𝑖 s.t. ∃periodic orbit colliding at 𝑥}

By the above remark, we gather that 𝛽𝑖 ∩ ̂𝛼𝛥
𝑖 = ∅; in principle 𝛽𝑖 can be quite thin

(e.g. a Cantor set), but it might also contain intervals. Let 𝛽 = ⋃𝑖 𝛽𝑖; then the
strongest spectral determination that one can hope to prove in smooth regularity
is:
Question. Let𝛺, 𝛺′ ∈ ℬ𝑁,𝑟

H so thatMLS𝛺 = MLS𝛺′ ; is it true that𝛺 is isometric
to 𝛺′ restricted on 𝛽?

A simpler (but still open!) question concerns spectral rigidity in this set:
Question. Is it true that any domain 𝛺 ∈ ℬ𝑁,𝑟

H is spectrally rigid on 𝛽? (i.e. any
isospectral deformation of 𝛺 is an isometry when restricted to 𝛽)?

In Lecture ⁇ we will see the proof of a related result, which, according to the
tradition, assumes analiticity and symmetry, on top of non-degeneracy. These con-
ditions greatly simplify the task at hand and allow to prove the following state-
ment:
Theorem 3.11 (—, Kaloshin, Leguil [12]). Consider the class of analytic domains
ℬ𝑁,𝜔

H with the following additional properties:
• scatterer 1 and 2 are mirror image of each other and they are symmetric with

respect to the 2-periodic orbit identified by the code (12)
• the Birkhoff Normal Form of the 2-periodic orbit (12) has nonzero quadratic

coefficient (non-degenerate twist condition)
Then if MLS𝛺 = MLS𝛺′ for any two domains in this class, we conclude that 𝛺 and
𝛺′ are isometric.
Remark 3.12. The knowledge of the full Marked Length Spectrum is actually not
necessary to recover the domain. It is sufficient to know the MLS in a “neigh-
borhood” of (12). The non-degeneracy assumption seems to be merely technical
and in principle it could be dropped (unless the Birkhoff sum is degenerate at all
orders, but it is unknown if this is even possible for a billiard)

On the other hand, the symmetry assumption is crucial, at the moment.
The proof of the above theorem hinges on another result, which will be de-

scribed in the following section 3.3; we will describe the result in full detail there,
but a small teaser can be phrased as follows:

Themarked length spectrum determines Lyapunov exponent of any given peri-
odic orbit. This is an interesting statement, which is –to some extent– also known
for convex billiards.

3.3. Recovering the Lyapunov spectrum. Let 𝑥 be a periodic point of prime
period 𝑞 for the billiard map; by Lemma 2.10, the differential 𝐷𝑥𝑇 𝑞

𝛺 ∈ SL(2, ℝ);
we denote the (possibly complex) eigenvalues of 𝐷𝑥𝑇 𝑞

𝛺 with 𝜆 and 𝜆−1. We call
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𝑥 a hyperbolic periodic point if |𝜆| ≠ 1; in this case, conventionally, we choose 𝜆
so that |𝜆|−1 < 1 < |𝜆|.
Exercise 3.13. Show that any accumulation point of a sequence of periodic points
of any given period is a periodic point (of the same period) so that 𝜆 = 𝜆−1 = 1.

The above exercise in particular implies that hyperbolic periodic points of given
period are discrete; more precisely, if 𝑥 is an hyperbolic periodic point of period
𝑞, there exists a neighborhood 𝑈 ∋ 𝑥 so that every point 𝑥′ ∈ 𝑈 ∖ {𝑥} is not
periodic of period 𝑞. (Periodic points of other periods will, in fact, accumulate
on 𝑥). The dynamics in a neighborhood of an hyperbolic periodic point can be
effectively described by its linearization; more precisely
Theorem 3.14 (Linearization). Let 𝑥 be a 𝑞-periodic point; then for any 𝜀 > 0,
there exists a 𝐶1+1/2-diffeomorphism 𝛷 ∶ 𝑈 → 𝑉, where 𝑈 is a neighborhood of
0 ∈ ℝ2 and 𝑉 a neighborhood of 𝑥. so that

𝑇 𝑞 ∘ 𝛷 = 𝛷 ∘ 𝑑𝑇 𝑞 ‖𝑑𝛷 − 𝐼𝑑‖𝐶0 < 𝜀.

Every periodic orbit of a dispersing billiard is hyperbolic and, also, Birkhoff
billiards have lots of hyperbolic orbits. In fact, the following holds:
Theorem 3.15. Any periodic orbit obtained as a quadratic minimizer of the gener-
ating function (e.g. Aubry–Mather orbits in Lemma 2.18) is hyperbolic.

Given a hyperbolic periodic point of prime period 𝑞, we define its Lyapunov
exponent to be log |𝜆|/𝑞 ≥ 0. We collect all such exponents in an object that we
call the Lyapunov spectrum of a billiard:
Definition 3.16. Let𝛺 be a billiard, then the Lyapunov Spectrum ЛS(𝛺) is defined
as the set of all Lyapunov exponents of all periodic points. We define the Marked
Lyapunov Spectrum MЛS in the same way as we defined the Marked Length Spec-
trum.

We want to conclude this lecture with a relatively complete sketch of the proof
of the following result
Theorem 3.17. For a hyperbolic billiard 𝛺 ∈ ℬ𝑁,∞

H , the map MЛS ∶ 𝛴p → ℝ is a
MLS-invariant.

3.4. Proof of invariance of the Lyapunov spectrum. First, we will prove that
it is possible to recover the Lyapunov exponents of a special class of periodic
orbits, called palindromic.
Definition 3.18. An orbit 𝜎 ∈ 𝛴𝑞 is called palindromic if �̄� = 𝜎.

Notice that the constraint 𝜎𝑗 ≠ 𝜎𝑗+1 implies that 𝑞 = 2𝑝. In turn this also
implies that the cyclically translated orbit. (𝜎𝑝𝜎𝑝+1 ⋯ 𝜎𝑞−1𝜎0𝜎1 ⋯ 𝜎𝑝−1) is also
palindromic. Since 𝜎 = �̄�, by Exercise 3.9 we gather that palindromic orbit are
invariant by the involution, that is to say that 𝜑0 = 0 (and 𝜑𝑝 = 0), that is to say
the orbit has an orthogonal collision at 𝜎0 and 𝜎𝑝.

As a first step of the proof of Theorem 3.17, we will show that we can deter-
mine the Lyapunov exponents for palindromic orbits. The key observation for
palindromic orbits is
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Lemma 3.19. Let ( ̄𝑠0, ⋯ , ̄𝑠2𝑝−1) denote the collision points of a palindromic peri-
odic orbit 𝜎 of least period 2𝑝; let

̂ℒ(𝑠0, ⋯ , 𝑠𝑝) =
𝑝−1

∑
𝑗=0

ℒ𝜎𝑗𝜎𝑗+1
(𝑠𝑗, 𝑠𝑗+1)

Then

̂ℒ(𝑠0, ⋯ , 𝑠𝑝) − ̂ℒ( ̄𝑠0, ⋯ , ̄𝑠𝑝) = 𝑄𝜎(𝑠0 − ̄𝑠0, ⋯ , 𝑠𝑝 − ̄𝑠𝑝) + 𝑅𝜎(𝑠0 − ̄𝑠0, ⋯ , 𝑠𝑝 − ̄𝑠𝑝)

where 𝑄𝜎 is a positive definite quadratic form and 𝑅𝜎 is a cubic remainder
The proof of the above lemma follows from the strict convexity of ℒ and is

omitted. Using the above property, we show the following fundamental estimate
Lemma 3.20. Let 𝜎 = (𝜎0, ⋯ , 𝜎𝑞−1) be a palindromic periodic orbit of period
𝑞 = 2𝑝 and 𝜆 be the multiplier of 𝐷𝑇 𝑞 at any point of the orbit. Let

𝜏 = (𝜎′
0, 𝜎1, ⋯ , 𝜎𝑞−1)

be admissible (notice we just change the first index) so that 𝜏𝜎 is admissible and
palindromic; then there exist nonzero constants 𝐶0 and 𝐶1 (depending on both 𝜎
and 𝜏) so that

MLS(𝜏𝜎𝑛) − 𝑛MLS(𝜎) = 𝐶0 + 𝐶1𝜆𝑛 + 𝑜(𝜆𝑛)

Using the above lemma, we recover 𝐶0, 𝜆 (and 𝐶1) as MLS-invariant by taking
the following limits:

𝐶0 = lim
𝑛→∞

MLS(𝜏𝜎𝑛) − 𝑛MLS(𝜎)

log𝜆 = lim
𝑛→∞

1
𝑛

log(MLS(𝜏𝜎𝑛) − 𝑛MLS(𝜎) − 𝐶0)

𝐶1 = lim
𝑛→∞

(MLS(𝜏𝜎𝑛) − 𝑛MLS(𝜎) − 𝐶0)𝜆−𝑛

Proof of Lemma. The first observation is that, in the natural topology on 𝛴:

lim
𝑛→∞

(𝜏𝜎𝑛) = (⋯ 𝜎𝜎 ⋯ 𝜎𝜏𝜎 ⋯ 𝜎𝜎 ⋯) =∶ ℎ∞

The orbit ℎ∞ is an heteroclinic orbit for the orbit identified by 𝜎; let us define
• (𝑦𝑘)𝑘∈ℤ be the coordinates of the periodic orbit 𝜎 (notice that 𝑦𝑘 = 𝑦𝑘+𝑞

since we assume that the orbit is 𝑞-periodic);
• (𝑧𝑛

𝑘 )𝑘∈ℤ be the coordinates of the periodic orbit 𝜏𝜎𝑛 (notice that 𝑧𝑛
𝑘 =

𝑧𝑛
𝑘+𝑞(𝑛+1));

• (𝑧∞
𝑘 )𝑘∈ℤ be the coordinates of the heteroclinic orbit.

Using Theorem 3.14, we can show that, for sufficiently large 𝑛:

|𝑧∞
𝑞𝑘+𝑗 − 𝑦𝑞𝑘+𝑗| ∼ 𝜆−𝑘 for all 𝑘 > 0, 𝑗 = 0, ⋯ , 𝑞 − 1(3.1)

|𝑧𝑛
𝑞𝑘+𝑗 − 𝑧∞

𝑞𝑘+𝑗| ∼ 𝜆𝑛−𝑘 for all 0 < 𝑘 < 𝑛/2, 𝑗 = 0, ⋯ , 𝑞 − 1.(3.2)
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The crucial idea of the argument is the following: consider the homoclinic orbit
𝑧∞, truncate it after 𝑞𝑁 collisions and compute the length of the truncated orbit:

𝐿∞
𝑞𝑁 =

𝑁−1
∑
𝑘=0

𝑞−1

∑
𝑗=0

ℒ(𝑧∞
𝑞𝑘+𝑗, 𝑧∞

𝑞𝑘+𝑗+1).

Since 𝑧∞ is homoclinic to 𝑦, we can “approximate” each group of 𝑞 collisions with
the 𝑞-periodic orbit:

𝐿∞
𝑞𝑁 − 𝑁MLS(𝜎) =

𝑁−1
∑
𝑘=0

𝑞−1

∑
𝑗=0

(ℒ(𝑧∞
𝑞𝑘+𝑗, 𝑧∞

𝑞𝑘+𝑗+1) − ℒ(𝑦𝑗, 𝑦𝑗+1 mod 𝑞)).

s Now we split the inner sum in half (since 𝜎 is palindromic)

𝐿∞
𝑞𝑁 − 𝑁MLS(𝜎) =

𝑁−1
∑
𝑘=0

[ ̂ℒ(𝑧∞
𝑞𝑘, ⋯ , 𝑧∞

𝑞𝑘+𝑝) − ̂ℒ(𝑦0, ⋯ , 𝑦𝑝)+

̂ℒ(𝑧∞
𝑞𝑘+𝑝, ⋯ , 𝑧∞

𝑞𝑘+2𝑝) − ̂ℒ(𝑦𝑝, ⋯ , 𝑦2𝑝))]

by Lemma 3.19, the right hand side is a geometric series (with ratio 𝜆2); we con-
clude that the left hand side has a limit as 𝑁 → ∞:

̃𝐶0 = lim
𝑁→∞

𝐿∞
𝑞𝑁 − 𝑁MLS(𝜎)

and that, asymptotically 𝐿∞
𝑞𝑁 − 𝑁MLS(𝜎) − ̃𝐶0 is exponentially small with rate

𝜆2. Now, if 𝐿∞
𝑞𝑁 were MLS-invariant, we would be done; too bad they are not.

The idea is then to approximate 𝐿∞
𝑞𝑁 with MLS(𝜏𝜎2𝑁−1)/2

Observe, in fact, that, since 𝜏𝜎2𝑁−1 is palindromic

1
2
MLS(𝜏𝜎2𝑁−1) = 1

2

2𝑁−1
∑
𝑘=0

𝑞−1

∑
𝑗=0

ℒ(𝑧2𝑁−1
𝑞𝑘+𝑗 , 𝑧2𝑁−1

𝑞𝑘+𝑗+1)

=
𝑁−1
∑
𝑘=0

𝑞−1

∑
𝑗=0

ℒ(𝑧2𝑁−1
𝑞𝑘+𝑗 , 𝑧2𝑁−1

𝑞𝑘+𝑗+1)

The quantity above should approximate 𝐿∞
𝑞𝑁, hence we subtract 𝑁MLS𝜎 from

both sides:

1
2
MLS(𝜏𝜎2𝑁−1) − 𝑁MLS𝜎 =

𝑁−1
∑
𝑘=0

𝑞−1

∑
𝑗=0

(ℒ(𝑧2𝑁−1
𝑞𝑘+𝑗 , 𝑧2𝑁−1

𝑞𝑘+𝑗+1) − ℒ(𝑦𝑗, 𝑦𝑗+1 mod 𝑞)).
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Now the left hand side should converge to ̃𝐶0, so we subtract also ̃𝐶0 from both
sides:

1
2
MLS(𝜏𝜎2𝑁−1) − 𝑁MLS𝜎 − ̃𝐶0 =

𝑁−1
∑
𝑘=0

𝑞−1

∑
𝑗=0

(ℒ(𝑧2𝑁−1
𝑞𝑘+𝑗 , 𝑧2𝑁−1

𝑞𝑘+𝑗+1) − ℒ(𝑦𝑗, 𝑦𝑗+1 mod 𝑞))−

−
∞

∑
𝑘=0

𝑞−1

∑
𝑗=0

(ℒ(𝑧∞
𝑞𝑘+𝑗, 𝑧∞

𝑞𝑘+𝑗+1) − ℒ(𝑦𝑗, 𝑦𝑗+1 mod 𝑞))

=
𝑁−1
∑
𝑘=0

𝑞−1

∑
𝑗=0

(ℒ(𝑧2𝑁−1
𝑞𝑘+𝑗 , 𝑧2𝑁−1

𝑞𝑘+𝑗+1) − ℒ(𝑧∞
𝑞𝑘+𝑗, 𝑧∞

𝑞𝑘+𝑗+1))

−
∞

∑
𝑘=𝑁

𝑞−1

∑
𝑗=0

(ℒ(𝑧∞
𝑞𝑘+𝑗, 𝑧∞

𝑞𝑘+𝑗+1) − ℒ(𝑦𝑗, 𝑦𝑗+1 mod 𝑞)).

Now, both quantities on the right hand side are geometric series by (3.1), and
they sum up to something of order 𝜆𝑁. This concludes the proof as we obtain the
needed asymptotics for 𝑛 = 2𝑁. �

We omit the argument for non-palindromic orbits, but we can conclude in two
ways

• either we adapt the argument (not too complicated, indeed)
• or we show that one can approximate the exponent of any orbit by the

exponent of a palindromic orbit (for instance it is possible to show that,
for arbitrary 𝜎, the exponent of (𝜎𝑛𝜏 ′�̄�𝑛𝜏″) for suitable 𝜏 ′ and 𝜏″ is as-
ymptotic to the exponent of 𝜎2𝑛)

We now sketch the proof of our determination result

Sketch of the proof of Theorem 3.11. Theorem 3.17 convinced you that it is possible
to recover information about the linearization of the Poincaré map (i.e. 𝑇 𝑞) asso-
ciated to any 𝑞-periodic point by using MLS-data. For analytic (smooth) maps,
however, one can do quite a bit better: first of all it is possible to conjugate the
Poincarémap in a neighborhood of a periodic point with its BirkhoffNormal Form
by an analytic (smooth) change of coordinates. The BirkhoffNormal Form is given
by:

(𝜉, 𝜂) ↦ (𝜆(𝜉𝜂)−1𝜉, 𝜆(𝜉𝜂)𝜂)

where 𝜆(𝜁) is an analytic function:

𝜆(𝜁) = 𝜆0 +
∞

∑
𝑛=1

𝑏𝑛𝜁𝑛

𝜆0 is the largest multiplier of the periodic point (Lyapunov exponent) and 𝑏𝑛’s
are called Birkhoff coefficients and they are invariant by analytic (smooth) change
of coordinates.

It is not hard to imagine that with more hard work one should be able to find
asymptotics of MLS that allow to recover all Birkhoff coefficients of every periodic
orbit. This is still not proved, but what we prove is:
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Theorem 3.21 (—,Kaloshin, Leguil [12]). Consider 𝜎 = (12); if 𝑏1 of the BNF
associated to 𝑇 2 at 𝜎 is not zero, then 𝑏𝑛 are MLS-invariants

The condition about 𝑏1 ≠ 0 is the generic nondegeneracy condition that ap-
pears in the statement of Theorem 3.11; this is a hyperbolic twist condition.
Remark 3.22. We expect this result to hold for arbitrary 𝜎 and without the condi-
tion on 𝑏1, but it seems to be quite a pain.

Once we have recovered the BNF, we resort to a variation of a well-known
result by Colin de Verdière
Theorem 3.23 (see [9]). The BNF of the Poincaré map of a periodic orbit with the
symmetries we require determines the jet of the curvature function at the periodic
points.

The theorem is not hard to believe: the jet of the curvature function at the pe-
riodic points, by symmetry, allows to write the jet of the generating function of
the dynamics near the orbit. The jet of the generating function in turns allows to
write the BNF. In the proof, Colin de Verdiére observes that –given the symme-
tries– these constructions are “upper triangular” and so one can walk back and
recover the jet from the BNF.

This, together with analiticity, allows to reconstruct scatterers 1 and 2 and with
a bit more work (not too hard) one reconstructs all other scatterers. �

Lecture 4. Spectral rigidity for convex billiards

4.1. A functional analytic prelude. We begin with a question that has nothing
to do with dynamics. Let 𝑓 ∶ T → ℝ be a smooth function. Assume that you know
the following data:

ℓ1(𝑓) = 𝑓(0)

ℓ2(𝑓) = 1
2

(𝑓(0) + 𝑓(1/2))

⋯ = ⋯

ℓ𝑞(𝑓) = 1
𝑞

𝑞−1

∑
𝑗=0

𝑓(𝑗/𝑞)

Question. What can you say about 𝑓? Can you reconstruct 𝑓?
If you look at the problem for long enough, it becomes clear that odd functions

annihilate each of the ℓ’s, so clearly you cannot reconstruct the odd part of 𝑓. Then
you notice that ℓ𝑞 → ∫ 𝑓, so you know the average of 𝑓. Can you reconstruct the
even part of 𝑓?

Now, this is perhaps a bit trickier.
Lemma 4.1. If 𝑓, 𝑔 are even functions so that ℓ𝑗(𝑓) = ℓ𝑗(𝑔) for any 𝑗, then 𝑓 = 𝑔.

Proof. Write 𝑓 in Fourier series:

𝑓(𝑥) = ∑
𝑝∈ℤ

̂𝑓𝑝𝑒𝑖𝑝𝑥
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then:

ℓ𝑞(𝑓) = 1
𝑞

𝑞−1

∑
𝑗=0

∑
𝑝∈ℤ

̂𝑓𝑝𝑒𝑖𝑝𝑗/𝑞 = 1
𝑞

∑
𝑝∈ℤ

̂𝑓𝑝

𝑞−1

∑
𝑗=0

𝑒𝑖𝑝𝑗/𝑞 = ∑
𝑞|𝑝

̂𝑓𝑝

The above is spelling out the fact that the sequence ℓ𝑞(𝑓) is the Möbius transform
of ̂𝑓𝑝. It is a well-known result in analytic number theory that there is a way
to invert the above relation that is called the Möbius inversion formula. Recall
that a number 𝑛 ∈ ℤ>0 is said to be squarefree if its prime decomposition has no
repeated primes (e.g. 18 = 3×3×2 is not squarefree, but 15 = 5×3 is squarefree,
and so is 30). Define the following function:

𝜇(𝑛) = {0 if 𝑛 is not squarefree
−1𝑃(𝑛) otherwise, where 𝑃(𝑛) is the number of prime divisors of 𝑛.

So, for instance 𝜇(18) = 0, 𝜇(15) = 1 and 𝜇(30) = −1. Then it is known that
the following formula holds:

̂𝑓𝑝 = ∑
𝑝|𝑞

𝜇(𝑞/𝑝)ℓ𝑞(𝑓).

The above means that we can formally recover the Fourier coefficients of 𝑓 from
the ℓ’s. This formula can be used as long as one can make sense of the infinite
sums, so we will need to require some decay in ̂𝑓. The proof follows from the
exercise below. �

Exercise 4.2. Assume 𝑓 is so that it is zero average and 𝑝𝛾 ̂𝑓𝑝 → 0 for some 𝛾 > 1,
then 𝑞𝛾ℓ𝑞(𝑓) → 0 for the same 𝛾.

Let us recast the above lemma in a form which will be useful later on: Let

ℎ𝛾 = {𝑎𝑗 s.t. 𝑗𝛾𝑎𝑗 → 0}

Then ℎ𝛾 is a separable Banach space; let

𝑋𝛾 = {𝑓 ∶ T → ℝ s.t. 𝑓(𝑥) = 𝑓(−𝑥), ∫
T

𝑓 = 0 and ̂𝑓𝑝 ∈ ℎ𝛾}.

Then the above discussion implies that:
Theorem 4.3. If 𝛾 > 1, then the operator 𝑇 ∶ 𝑋𝛾 → ℎ𝛾 which maps

𝑇 ∶ 𝑓 ↦ (ℓ𝑞(𝑓))𝑞∈ℤ>0

is invertible.

4.2. Smooth deformation of domains.
Definition 4.4. A family (𝛺𝜏)𝜏∈(−𝜀,𝜀) of domains in ℳ𝑟 is said to be smooth if
the following holds: let 𝛾(0, ·) be the arc-length parametrization of 𝛺0; then we
want the function 𝛾(𝜏, 𝑠) to be smooth.

All results about rigidity hold modulo isometry; it makes thus sense to fix an
origin and an orientation for all domains that we consider. We thus assume that
𝛾(𝜏, 0) = 0 and ̇𝛾(𝜏 , 0) = (1, 0) for any 𝜏. we also assume that the symmetry
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axis passes through the origin (and hence it is the vertical axis). We also assume
that the parametrization in 𝑠 is symmetric for any 𝜏.

Given 𝜏, we can define the infinitesimal normal deformation at 𝑠 –denote it with
𝑛𝜏(𝑠)– as the projection of 𝜕𝜏𝛾 on the outer normal vector at 𝑠. Assume that we
can show that, if 𝛾 is an isospectral family, then for any 𝜏 𝑛𝜏(𝑠) is identically zero;
then we conclude that 𝛾(𝜏, 𝑠) is constant in 𝜏.

If 𝛾 is a family of smooth symmetric domains, then necessarily 𝑛(𝑠) is an even
function of 𝑠. Notice moreover that since the point identified by 𝑠 = 0 is constant
in 𝜏, we necessarily have 𝑛(0) = 0. Let 𝑃 denote the space of smooth functions
𝑛 that are even and so that 𝑛(0) = 0.

Given an orbit 𝛩 = ((𝑠0, 𝜓0), (𝑠1, 𝜓1), ⋯ , (𝑠𝑞−1, 𝜓𝑞−1)), it is easy to compute
the variation of the length of the orbit by a normal perturbation 𝑛(𝑠).
Exercise 4.5. The (infinitesimal) variation of the length of the orbit 𝛩 is given by:

ℓ𝛩(𝑛) =
𝑞−1

∑
𝑗=0

𝑛(𝑠𝑗) sin𝜓𝑗

Notice that the variation is a functional acting on the infinitesimal deformation.
Let us consider the following sequence of periodic orbits (𝛩𝑞)𝑞>1: 𝛩𝑞 it the

maximal16 periodic orbit of rotation number 1/𝑞 which passes through the origin.
It is easy to show that such orbits always exist, by symmetry (it is yet another
variational argument)

The strategy is then as follows; let ℓ𝑞 = ℓ𝛩𝑞
be the functional associated to

the orbit 𝛩𝑞. Assume that we can prove that if 𝑛 is so that ℓ𝑞(𝑛) = 0, then
𝑛 is identically 0. Then we have proven spectral rigidity. Given a symmetric
domain 𝛺, we collect all functionals in an operator:𝐿𝛺 ∶ 𝑃 → ℝN which maps
𝑛 ↦ (ℓ𝑞(𝑛))𝑞>1. Assumewe can find a suitable space of functions, which contains
smooth functions, onwhich the operator 𝐿𝛺 is injective. Then 𝛺 is infinitesimally
spectrally rigid, since only 0 is in the kernel. If we can show that it is injective
for any 𝛺 in a neighborhood, then we conclude that 𝛺 is spectrally rigid. We call
𝐿𝛺 the linearized isospectral operator associated to the domain 𝛺

4.3. The linearized isospectral operator.
Conjecture. For generic symmetric 𝛺 ∈ ℳ∞, there exists an open set 𝑈 ∋ 𝛺 so
that for any 𝛺′ ∈ 𝑈 the operator 𝐿𝛺′ is injective on smooth even functions.

It is completely possible that the operator is injective for every (symmetric)
domain, but this seems much harder to prove than the above conjecture. We do
not have a single example of a domain for which 𝐿𝛺 is not injective.
Remark 4.6. Injectivity of 𝐿𝛺 is sufficient for rigidity, but not necessary. Assume
that 0 ≠ 𝑛 ∈ ker𝐿𝛺. Possibly, there exists an orbit 𝛩′ (not part of the list 𝛩𝑞) so
that ℓ𝛩′(𝑛) ≠ 0.

The main result of [14] is indeed the following:

16It might be the case that there are several such orbits; in this case we select the one with
smallest parameter 𝑠1.
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Theorem 4.7. There exists a suitable space of perturbations 𝑃∗, which contains
smooth even perturbations, and an open set 𝑈 ⊂ ℳ8 that contains all disks so
that for any 𝛺 ∈ 𝑈, the operator 𝐿𝛺 is injective on 𝑃∗.
Remark 4.8. Indeed we show a bit more: we prove that the kernel of 𝐿𝛺 is finite-
dimensional for every 𝛺 (and in a suitable neighborhood of a disk, the dimension
of the kernel happens to be 0); this implies that if there is a symmetric domain that
is not spectrally rigid, then the family of isospectral symmetric domains passing
through it is at most finite-dimensional.

We now need to study properties of this operator. First, however, let us em-
phasize the relation with the problem that we encountered in Section 4.1.
Exercise 4.9. Show that if 𝛺 is a disk of perimeter 1, then:

• 𝛩𝑞 = ((𝑗/𝑞, 𝜋/𝑞))𝑞−1
𝑗=0 .

• ℓ𝑞 is a multiple of the one defined in Section 4.1

Conclude that any disk is infinitesimally spectrally rigid with respect to smooth
symmetric deformations (note that 𝑙1 is missing, but the normalization takes care
of it!)

The key thing to prove is that there are good coordinates which conjugate the
dynamics to one which is close enough to the dynamics on the disk. To fix ideas
(and our constants), we consider the disc of perimeter 1

The leading order is given by the so-called Lazutkin parametrization:

𝑥(𝑠) = 𝐶 ∫
𝑠

0
𝜌−2/3(𝑠′)𝑑𝑠′,

where 𝐶 is chosen so that 𝑥(1) = 1.
Remark 4.10. TheLazutkin parametrizationwas found in the 1970’s by V. Lazutkin
with the purpose of showing existence of KAM invariant curves for the Billiard
problem. Lazutkin’s result states that there exists a Cantor set of invariant curves
(caustics corresponding to irrational rotation number) which accumulate on the
boundary of the phase space.

The following is an interesting exercise:
Exercise 4.11. Let𝑛(𝑥) be a normal perturbation expressed in the Lazutkin parametriza-
tion; then:

∫
T

𝑛(𝑥)𝑑𝑥 = 𝜕𝜏|𝜕𝛺𝜏|;

the average of 𝑛 is the rate of change of the perimeter of the billiard table. Since
the perimeter of the table is a length spectral invariant for deformations, we con-
clude that 𝑛 (expressed in Lazutkin coordinates) must have 0-average.

Lazutkin coordinates are particularly nice to study the dynamics:
Lemma 4.12. Let 𝑟 ≥ 8; for any 𝜀 > 0 there exists 𝛿 > 0 so that for any 𝛺 in a
𝛿-𝐶𝑟-neighborhood of the disc of perimeter 1, there exists smooth 𝐶𝑟−4-functions 𝛼
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(odd) and 𝛽 (even) of 𝐶𝑟−4-norm smaller than 𝜀 so that:

𝑥𝑗
𝑞 = 𝑗/𝑞 + 𝛼(𝑗/𝑞)

𝑞2 + 𝜀𝑂(𝑞−4)

sin𝜓𝑗
𝑞

𝑤𝑞(𝑥𝑗
𝑞)

= 1
𝑞

[1 + 𝛽(𝑗/𝑞)
𝑞2 + 𝜀𝑂(𝑞−4)]

where 𝑤𝑞 is a weight function17. Moreover, 𝛼 and 𝛽 depend continuously on 𝛺 (in
the respective topologies).
Remark 4.13. The functions 𝛼 and 𝛽 are related by a differential relation (roughly
speaking, 𝛽 is the derivative of 𝛼). They are both 0 if 𝛺 is a disk.
Remark 4.14. If we choose sufficlently large 𝑟 we can, in theory, find an arbitrarily
precise expansion such as:

𝑥𝑗
𝑞 = 𝑗/𝑞 +

𝑛−1
∑
𝑘=1

𝛼𝑘(𝑗/𝑞)
𝑞2𝑘 + 𝜀𝑂(𝑞−2𝑛)

sin𝜓𝑗
𝑞

𝑤𝑞(𝑥𝑗
𝑞)

= 1
𝑞

[1 +
𝑛−1
∑
𝑘=1

𝛽𝑘(𝑗/𝑞)
𝑞2𝑘 + 𝜀𝑂(𝑞−2𝑛)]

where 𝛼𝑘 and 𝛽𝑘 are 𝐶𝑟−2−2𝑘. We do not use the above expansion in our result,
but it is good to know that we should have it for future work.

At this point we can indeed study the operator; inspired by our little exercise
in analysis, we check what happens as 𝑞 → ∞; of course we obtain:

lim
𝑞→∞

ℓ𝑞(𝑛) = ∫
T

𝑛(𝑥)𝑑𝑥

Since we know that the right hand side should be zero for an isospectral deforma-
tion, we can restrict ourselves to zero Lazutkin average. We can then study the
speed of decay and we find that

lim
𝑞→∞

1
𝑞

ℓ𝑞(𝑛) = 𝜕𝜏𝐼2(𝛺𝜏)

where 𝐼𝑘(𝛺) is the 𝑘-th Marvizi–Melrose invariant of the domain.
Remark 4.15. In their paper [25], Marvizi–Melrose show the existence of a se-
quence of Laplace-spectral invariants of any convex domains. Such invariants
are obtained by integrating a differential polynomial in (some power of) the cur-
vature function. In the same paper they show that such invariants can also be
computed by the length spectrum and correspond to coefficients of the asymptot-
ic expansion of lengths of periodic orbits of rotation number 1/𝑞.

17If you really want to know it is

𝑤𝑞(𝑥) = 𝑞 sin
𝜌(𝑥)−1/3

2𝐶𝑞
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We then define a functional ℓ•(𝑛) = lim𝑞→∞
1
𝑞 ℓ𝑞(𝑛) and further restrict to

deformations which lie in the kernel of ℓ•. Let

𝑋∗
𝛾 = {𝑛 ∈ 𝑋𝛾 s.t. ∫ 𝑛 = 0, ℓ•(𝑛) = 0},

Then, we can prove the following:
Lemma 4.16. If 𝛾 ∈ (3, 4), then the operator 𝐿𝛺 maps 𝑋∗

𝛾 to ℎ𝛾; moreover it is
continuous in 𝛺 in the operator topology.

Since 𝐿𝛺 is invertible on 𝑋∗
𝛾 if 𝛺 is a disk, the above lemma allows to con-

clude that it is invertible in a neighborhood of a disk. Hence it is injective when
restricted to smooth perturbations.

5. Conclusions

There is a very strong link between the quantum and the dynamical inverse
problem. Both are very challenging, natural, interesting problems. Their study
involves geometry, dynamics, analysis (and even a bit of number theory!). There
are a number of open problems; let me recall them
Conjecture (Sarnak [26]). Every domain bounded by a 𝐶∞ curve is locally deter-
mined by its Laplace Spectrum.
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