
DISPERSING FERMI–ULAM MODELS

JACOPO DE SIMOI AND DMITRY DOLGOPYAT

Abstract. We study a natural class of Fermi–Ulam Models that
features good hyperbolicity properties and that we call dispersing
Fermi–Ulam models. Using tools inspired by the theory of hyper-
bolic billiards we prove, under very mild complexity assumptions,
a Growth Lemma for our systems. This allows us to obtain er-
godicity of dispersing Fermi–Ulam Models. It follows that almost
every orbit of such systems is oscillatory.
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1. Introduction.

A Fermi–Ulam Model is a classical model of mathematical physics.
It describes a point mass moving freely between two infinitely heavy
walls. One of the walls is fixed and the other one moves periodically.
Collisions with the walls are assumed to be elastic, therefore the kinetic
energy of the particle is conserved except at collisions with the moving
wall. We denote the distance between the two walls at time t by `(t).
We assume ` to be strictly positive, Lipschitz continuous, piecewise
smooth and periodic of period 1.

This model was introduced by Ulam, who wanted to obtain a simple
model for the stochastic acceleration, which according to Fermi [26, 27]
is responsible for the presence of highly energetic particles in cosmic
rays. Ulam and Wells performed numerical study of the Fermi–Ulam
model (see [43]). The authors were interested in harmonic motion of
the walls but due to limited power of their computers they had to
study less computationally intensive wall motions. Namely, they as-
sumed that velocity was either piecewise constant or piecewise linear,
since in that case the location of the next collision can be found by
solving either linear or quadratic equation. A few years after [43], it
has been pointed out by Moser that if the motion of the wall is suf-
ficiently smooth (in particular, harmonic motions) then KAM theory
implies that all orbits have bounded velocities and so stochastic ac-
celeration is impossible. The precise smoothness assumptions lneeded
for the application of KAM theory have been worked out by several
authors [25, 30, 36, 37]. However, Moser’s argument does not apply
to the wall motions studied in [43]. In fact, piecewise smooth motions
have been a subject of intensive numerical investigations and several
authors have reported the presence of chaotic motions for certain pa-
rameter values (see e.g. [4, 15]). The first rigorous result about the
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models studied in [43] is due to Zharnitsky, who proved in [46] the ex-
istence of unbounded orbits for a range of parameters values. The next
natural question is how large is the set of orbits exhibiting stochastic
acceleration. In [17], we studied general wall motions such that the ve-
locity of the wall has only one discontinuity per period. We found1 that
the large energy behavior of this system depends crucially on the value
of a parameter which, under the assumption that the discontinuity is
at 0, takes the form

∆ = `(0)[`′(0+)− `′(0−)]

∫ 1

0

`−2(t)dt(1.1)

where the second factor amounts to the velocity jump at 0. In par-
ticular, we proved that the motion of the particle is chaotic for large
energies if ∆ 6∈ [0, 4] and it is regular for large energies if ∆ ∈ (0, 4).

While the large energy dynamical behavior depends only on the aver-
age value of `−2 and on the values of ` and its derivative at the moment
of jump (according to (1.1)), the dependence of the small energy dy-
namics on ` is more delicate. It turns out that the following property
is sufficient to ensure stochastic behavior for all energies.

Definition 1.1. A Fermi–Ulam model is said to be dispersing if there
exists K > 0 so that `′′(t) ≥ K for all t where `′′ is defined.

In this paper we study the dynamics of dispersing Fermi–Ulam mod-
els. Note that for dispersing models, the value of ∆ defined by (1.1)
is necessarily negative. Indeed, the first and the last factors are pos-
itive while the second factor is negative because periodicity implies
that `′(0−) = `′(1−) and the dispersing property implies that `′(t) is
increasing on its interval of continuity. Thus, according to [17], dispers-
ing Fermi–Ulam models are indeed stochastic for large energies. The
goal of this paper is to show that stochasticity holds for all energies:
we will prove that such systems are ergodic.

To fix ideas, we take ` to be defined on the fundamental domain [0, 1].
We assume that ` is C5-smooth on (0, 1) and that it can be smoothly
extended to some neighborhood of (0, 1). We assume the fixed wall to
be at the coordinate z = 0, and the coordinate of the moving wall at
time t to be z = −`(t). Let Ω denote the extended phase space of the
system, defined as

Ω = {X = (t, z, v) ∈ R3 s.t. − `(t) ≤ z ≤ 0}.
where z denotes the opposite of the distance between the point mass
and the fixed wall, v is its velocity, with the positive direction pointing

1The results of [17] needed in the present paper are stated precisely in Section 4.2.
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away from the moving wall. The dynamics of the system is described
by the Hamiltonian flow Φs : Ω → Ω, which acts on Ω preserving the
volume form dt ∧ dz ∧ dv (see Section 2).

It will be more convenient to describe the dynamics on a suitable
Poincaré section. Define the collision space M = [0, 1] × [0,∞) 3
x = (r, w). The collision map F : (r, w) 7→ (r′, w′) can be described
as follows: a point mass which leaves the moving wall at time (mod
1) r with velocity w relative to the moving wall will have its next
collision with the moving wall at time (mod 1) equal to r′ and will
leave the moving wall with relative velocity w′ (which is thus called
post-collisional relative velocity). The invariant volume form dt∧dz∧dv
induces an invariant measure µ for F where

dµ = (v + ˙̀(t))dv ∧ dt = w dw ∧ dr.

Due to presence of singularities (the issue will be covered in detail
in Section 3), the map F and its iterates are not defined everywhere.
It is fortunately simple to show that the singularity set is a µ-null set
(namely, a countable union of smooth curves). Therefore the dynamics
is well defined µ-almost everywhere, which is, in fact, all we need for
the study of statistical properties of the system.

In [17] we proved that every dispersing Fermi–Ulam models is recur-
rent, that is, µ-almost every point eventually visits a region of bounded
velocity; moreover, we showed that such systems are (non-uniformly)
hyperbolic for large velocities.

We now state the main result of the present work.

Main Theorem. Dispersing Fermi–Ulam models that are regular at
infinity are ergodic.

Regularity at infinity is a technical condition which allows to control
the combinatorics of collisions at infinity (see Section 6.1 for the defi-
nition). For the moment we note that this property depends only on
the parameter ∆ defined by (1.1). We will show in the appendix that
this condition may fail at most for countably many values of ∆. In
particular all dispersing Fermi–Ulam models with |∆| > 1

2
are regular

at infinity (see Remark 6.4).
Consider, as an example, piecewise quadratic motions studied in [43].

Thus we assume that

`(t) = 1 + a

(
{t} − 1

2

)2

,
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where {·} denotes the fractional part2 . Here a is a real number that
we assume to be greater than −4 so that `(t) > 0 for all t. In this
example we have `′′(t) = 2a, thus the model is dispersing if and only if
a > 0. In this case one can compute (see [17]) that

|∆|(a) = a+

√
a(a+ 4)

2
arctan

(√
a

2

)
.

Studying this function we see that |∆|(a) > 1/2 for a > 1/4. Hence, the
model is regular at infinity for all a > 0 except, possibly, a countable
set of values of a ∈ (0, 1/4) .

The foregoing discussion shows that most dispersing Fermi–Ulam
models are ergodic. It is possible that, in fact, all dispersing Fermi–
Ulam models are ergodic, but the proof of this would require new ideas.
On the other hand, the assumption that the Fermi–Ulam model is dis-
persing is essential. For example, for piecewise quadratic wall motions
with one singularity, then non-dispersing models are not necessarily
ergodic (see [17]).

Recall that an orbit {(rn, wn)}n∈Z where (rn, wn) = Fn(r0, w0) is said
to be oscillatory if lim supwn =∞ and lim inf wn <∞.

Corollary 1.2. Almost every orbit of a dispersing Fermi–Ulam Model
that is regular at infinity is oscillatory.

Φs

t

z

`(t)

Figure 1. Dynamics of a dispersing Fermi–Ulam Model

2Here the time scale is fixed by the requirement that the motion is 1 periodic

and spatial scale is fixed by the requirement that `

(
1

2

)
= 1.
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The core observation made in this paper is that the dynamics of
dispersing Fermi–Ulam Models sports remarkable geometrical similari-
ties with the dynamics of planar dispersing billiards3, although with an
unusual reflection law. Moreover, our phase space M is non-compact,
and the smooth invariant measure for F is only σ-finite. Ergodicity of
systems with singularities, preserving a smooth infinite measure is dis-
cussed for example in [39, 31, 32]. However, our system is significantly
more complicated as we explain below.

Recall first, that the study of ergodicity of uniformly hyperbolic
systems goes back to Hopf (see [28]), who analyzed the case where
the stable and unstable foliations are smooth. The Hopf argument
was extended to smooth uniformly hyperbolic systems4 by Anosov and
Anosov–Sinai [1, 2]. Hyperbolic systems with singularities are dis-
cussed in [40, 14, 29, 35, 34]. In order to use the Hopf method (which
is recalled in Section 8) one needs to ensure that most points have
long stable and unstable manifolds. A classical way to guarantee this
fact is to require that a small neighborhood of the singularity set has
small measure. In our case the system is non-compact, and an arbi-
trary small neighborhood of the singularity set has infinite measure,
so a different method has to be employed. A more modern approach
relies on the so called Growth Lemma, developed in [6], see [9] for
a detailed exposition. The Growth Lemma implies that each unstable
curve intersect many long stable manifolds and vice versa. The Growth
Lemma provides a significant improvement on the classical estimate on
the sizes of unstable manifolds and it has numerous applications to the
study of statistical properties, including mixing in finite and infinite
measure settings [13, 11, 10, 22], limit theorems [12, 24], and averag-
ing [7, 8, 23]. However, in order to prove the Growth Lemma one needs
to study the structure of the singularity set in great detail. It turns
out that the structure of singularities in dispersing Fermi-Ulam models
is quite complicated. Continuing the analogy with billiards, it corre-
sponds to billiards with infinite horizon billiards with corner points.
The Growth Lemma for billiards with corners was established only re-
cently (see [18] for finite and [5] for infinite horizon case). Comparing
to the aforementioned class of billiards, an additional difficulty in our
model is the lack of hyperbolicity at infinity. Indeed, when the velocity

3 This is one reason why we call such models dispersing. The other explanation
in terms of geometric optics is given in Subsection 2.4.

4 In such systems stable and unstable foliations are only Hölder continuous,
see [1].
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is large, the travel time is short and the expansion deteriorates. To ad-
dress this issue, an accelerated map was studied in [17] (see also [21, 20]
for related results). The main contribution of this paper is to combine
the analysis of the high energy regime studied in [17], with the analy-
sis of low energies (mostly based on the ideas of [9] and the advances
obtained in [18]) in order to prove a Growth Lemma valid for all en-
ergies. The Growth Lemma also allows to prove absolute continuity
of the stable and unstable laminations, which is a crucial ingredient in
the proof of ergodicity via the Hopf argument. Absolute continuity is
proved in great generality for finite measure hyperbolic systems with
singularities in [29], but their results cannot be applied to our infinite
measure setting, so a different technique has to be employed.

We hope that the methods developed in this paper could be use-
ful for studying other hyperbolic systems preserving infinite measure
(such as, for example, the systems from [33, 47]) and that our Growth
Lemma will be useful in studying more refined statistical properties of
dispersing Fermi–Ulam models.

Since our analysis has many features in common with the study of
billiards, we will try, wherever possible, to employ the same notation
as in [9]. However, the arguments necessary for our system require sig-
nificant modifications in many places, which is, ultimately, the reason
for the length of this paper.

The structure of the paper is as follows. In Section 2 we describe
basic properties of dispersing Fermi–Ulam Models, including invariant
cones and expansion rates. Section 3 discusses the structure of the
singularities of the Poincaré map. Section 4 is devoted to the high
energy regime. The results of [17] are recalled and extended. Section 5
studies distortion of the collision map and obtains regularity estimates
on the images of unstable curves. The main technical tool –the Growth
Lemma– is then proven in Section 6. This lemma is used in Section 7
to study the properties of stable and unstable laminations which lead
to the proof of Ergodicity via the Hopf argument in Section 8. Possible
directions of further research are discussed in Section 9. Appendix A
contains the proof that for all but, possibly, countably many values of
∆, the corresponding model is regular at infinity. The main issue is to
show that certain polynomials are not identically zero by estimating
their values in a perturbative regime.

A remark about our notation for constants. We will use the
symbol C# to denote a constant whose value depends uniquely on `
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(which we assume to be fixed once and for all). The actual value of C#

can change from an occurrence to the next even on the same line.

2. Hyperbolicity

In this section we prove existence of invariant stable and unstable
cones for the dynamics and estimate the expansion of tangent vectors.
We begin with an essential property of Hamiltonian dynamics.

2.1. Involution. Since Fermi–Ulam Models are mechanical systems,
there exists a time-reversing involution; on the other hand, since our
system is non-autonomous, we also need to change the time-dependence
of the Hamiltonian function, i.e. we need to reverse the motion of the
moving wall. For any `, let ¯̀(r) = `(1−r) denote the reversed motion, Ω̄
the corresponding extended phase space and Φ̄s : Ω̄→ Ω̄ the flow map
corresponding to the reversed motion of the wall. Define I : R3 → R3

so that I : (t, z, v) 7→ (−t, z,−v). Clearly, I(Ω) = Ω̄; moreover I is an
involution (i.e. I ◦ I = 1) which anticommutes with the flow, i.e.

I ◦ Φ−s = Φ̄s ◦ I.

Notice a trivial but important fact, that `′′ ≥ K if and only if ¯̀′′ ≥ K.

2.2. Jacobi coordinates. In billiards, in order to study of hyperbolic
properties of the system, it is convenient to change coordinates in Ω
to so-called Jacobi coordinates (see e.g. [45]). In our case this step is
not necessary, since, the coordinates (z, v) turn out to be the Jacobi
coordinates of our system. To fix ideas, let us write the action of
the flow map Φs on the extended phase space Ω as Φs : (t, z, v) 7→
(t+ s, zs, vs). If no collision occurs between t and t+ s, then we have

zs = z + s · v vs = v;(2.1)

differentiating the above yields dzs = dz + sdv and dvs = dv, that is,

dΦs|(z,v) =

(
1 s
0 1

)
=: Us.

Assume now that between t and t+s there is exactly one collision which
occurs with the moving wall; the case of a collision with the fixed wall is
simpler and will be considered in due time as a special case. Let t̄ be the
time of the collision, z̄ = −`(t̄ mod 1) be the position of the point mass
at the time of the collision, v̄− the pre-collisional velocity and v̄+ the
post-collisional velocity; finally let s− = t̄−t and s+ = s−s− = t+s− t̄
(see Figure 2). Then:
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z

zs

s−

s+ w

v̄+

h

Figure 2. Sketch of a collision with the moving wall.

z = z̄ − s−v̄− zs = z̄ + s+v̄+

v = v̄− = h− w vs = v̄+ = h+ w,

where h(r) = −`′(r) denotes the velocity of the moving wall at time
r (i.e. the slope of the boundary at the point of collision). Moreover,
let κ(r) = `′′(r) ≥ K be the opposite5 of the acceleration of the wall at
time r; then:

dt̄ = dr dz̄ = hdr dh = −κdr.
We thus obtain

dz = (h− v̄−)dr − s−dv̄− dzs = (h− v̄+)dr + s+dv̄+(2.2a)

dv = −κdr − dw dvs = −κdr + dw.(2.2b)

We want to study what happens exactly during a collision, therefore
we let s−, s+ → 0+ and eliminate dr and dw, obtaining:

dz+ = −dz− dv̄+ = −Rdz− − dv̄−.

Here dz− = lim
s−→0+

dz and dz+ = lim
s+→0+

dzs, and we defined the collision

parameter R = 2κ/w > 0 following the usual notation and terminology
of billiards. From the above expression it is clear that some special care
is needed to deal with collisions with small w. If w = 0 we say that
we have a grazing collision. Such collisions give rise to singularities, as
will be explained in detail later. Notice that collisions with the fixed
wall yield the same formula with R = 0.

5 This choice of signs reflects the analogous choice which is usually made in the
billiard literature.
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Define now:

LR :=

(
1 0
R 1

)
.

Let us denote by τ the time elapsed before the next collision with the
moving wall (including grazing collisions). We can write the differential
dΦτ |(z,v) as the product

(2.3) dΦτ |(z,v) = (−1)nF+1LRUτ

where nF is the number of collisions with the fixed wall occurring be-
tween time t and t+ τ , which can be either 0 or 1.

2.3. Invariant cones. (See [9, Section 3.8]). Since we are dealing
with matrices acting on R2, we will find convenient to deal with slopes,
rather than vectors; slopes in Jacobi coordinates will be denoted by
B = δv/δz and will be called p-slopes. A (non-degenerate) matrix acts
on slopes as a (non-degenerate) Möbius transformation. In particular,
let J : R \ {0} → R \ {0} denote the inversion x 7→ x−1 and let Tα
denote the translation x 7→ x+α, for α ∈ R. Then Uτ induces the map
J ◦ Tτ ◦ J , and LR the map TR, that is:

Uτ : B 7→ (B−1 + τ)
−1

LR : B 7→ B +R(2.4)

so we can rewrite (2.3) for p-slopes as follows:

B 7→ [TR ◦ J ◦ Tτ ◦ J ]B.(2.5)

The above formula immediately shows that the increasing cone {B > 0}
is forward-invariant6. By the properties of the involution, it is also clear
that the decreasing cone {B < 0} is invariant for the time-reversed flow.
It is not difficult to express the invariant cones in collision coordinates.
Namely let V denote the slope of a vector in collision coordinates, that
is V = δw/δr. Then, using equations (2.2), we obtain

(2.6) V = −κ− B−w = κ− B+w,

where B− and B+ denote respectively the pre-collisional and post-
collisional p-slopes. Thus the cone {V ≤ −K} (induced by B− ≥ 0) is
forward invariant and, correspondingly, {V ≥ K} (induced by B+ ≤ 0)
is backward invariant.

Definition 2.1. Let the unstable and stable cone field be, respectively:

Cu
x = {(δr, δw) ∈ TxM s.t. −∞ < δw/δr ≤ −K}
Cs
x = {(δr, δw) ∈ TxM s.t. K ≤ δw/δr <∞}.

6 In fact J clearly preserves such cone; moreover τ > 0 by definition and R > 0
by our hypotheses, which implies that also Tτ and TR preserve the increasing cone.
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A curve is said to be an unstable curve, or u-curve (resp. a stable curve
or s-curve) if the tangent vector at each point is contained in Cu (resp.
Cs). A curve (either stable or unstable) curve is said to be forward
oriented if the tangent vector at each point has a positive r-component.

Remark 2.2. Observe that in our system unstable curves are decreasing
and stable curves are increasing. This, unfortunately, is the opposite
of the situation that arises in billiards.

Conventionally, we consider curves to be the embeddings an open
intervals, i.e. without endpoints. By our previous arguments, F∗Cu

x ⊂
Cu
Fx and F−1

∗ Cs
x ⊂ Cs

F−1x. Moreover by (2.3) we gather that a forward-
oriented unstable (resp. stable) curve is sent by F (resp. F−1) to a
forward-oriented unstable (resp. stable) curve, if the ball has a collision
with the fixed wall between the two collisions with the moving wall and
to a backward-oriented unstable (resp. stable) curve otherwise.

Further, define the two closed cones7

Px = {(δr, δw) ∈ TxM s.t. 0 ≤ δw/δr ≤ ∞}(2.7a)

Nx = {(δr, δw) ∈ TxM s.t. −∞ ≤ δw/δr ≤ 0}(2.7b)

and observe that by (2.6) we have

(2.8) B+ =
κ− V
w

, B− =
−κ− V
w

.

From the above equations it follows easily that

F∗Nx ⊂ Cu
Fx F−1

∗ Px ⊂ Cs
F−1x;(2.9)

in particular, also in (r, w)-coordinates we have that the decreasing
cone field Nx is forward invariant and the increasing cone field Px is
backward invariant.

2.4. Geometrical interpretation of p-slopes. We have the follow-
ing geometrical interpretation of invariant cones in Jacobi coordinates:
vectors in the tangent space correspond to infinitesimal wave fronts; if
B > 0 then the front is dispersing, i.e. nearby trajectories tend to get
separated when flowing in positive time. Correspondingly B < 0 corre-
sponds to trajectories which would separate when flowing in negative
time, i.e. to trajectories which are focusing in positive time. The case
B = 0 corresponds to flat fronts, whereas the case B =∞ corresponds
to a focused front (i.e. all trajectories are emitted from the same point).

7 In the following definitions, with δw/δr =∞ we allow vectors to be vertical.
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2.5. Expansion. Jacobi coordinates are convenient coordinates on the
tangent space to the collision space M. By (2.2) it follows that(
dz
dv

)
=

(
w 0
κ −1

)(
dr
dw

)
,

(
dr
dw

)
=

(
w−1 0
κw−1 −1

)(
dz
dv

)
.

For any x ∈ M, let τ(x) ≥ 0 denote the time elapsed until the
following (possibly grazing) collision with the moving wall. Let us
consider a vector of p-slope B+ = B at x; then (2.1) implies that,
during a flight of duration τ , we have dzτ = (1 + τB)dz and dvτ = dv.
On the other hand, at a collision, we have |dz+| = |dz−|. Define the
metric |dz| for (non-vertical) tangent vectors (the so-called p-metric).
Then we obtain that, if the p-slope of a vector v is B, its expansion by
the collision map in the p-metric is given by

(2.10)
|dzτ(x)|
|dz|

= 1 + τ(x)B.

If vn ∈ Cu
xn (i.e. B > Rn), since Rn is bounded below by 2K/wn we

obtain the lower bound

(2.11)
|dzn+1|
|dzn|

≥ 1 +
2K
wn

τn

where τn = τ(xn). Observe that (2.11) does not ensure any uniformity
for the expansion of unstable vectors in the p-metric. In fact for large
relative velocities τ ∼ w−1. Additionally, τ can be arbitrarily small
also for small relative velocities, because of the possibility of rapid
subsequent collisions with the moving wall.

We will see later that both these inconveniences can be circumvented
by defining an adapted metric and inducing on a suitable subset of the
collision space (see Proposition 4.15). However, before doing so, it is
necessary to study singularities of our system.

3. Singularities

The existence of invariant cones places Fermi–Ulam Models into the
class of hyperbolic systems with singularities. This class also contains
piecewise expanding maps, dispersing billiards, and bouncing ball sys-
tems (see [9, 34, 41, 44] and references therein). In hyperbolic maps
with singularities, there is a fundamental competition between expan-
sion of vectors inside the unstable cone and fracturing caused by sin-
gularities. If fragmentation prevails, such maps can indeed have poor
ergodic properties (see e.g. [42]). Our goal is to show that this does
not happen for (most) dispersing Fermi–Ulam Models; this will be ac-
complished with the proof of the Growth Lemma in Section 7.1.
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In this section, we collect preliminary information about the geom-
etry of singularities8 of the collision map F .

Remark 3.1. In the following, if X ⊂ M, we will use the notation
intX (resp. clX, ∂X) to denote the topological interior (resp. closure,
boundary) of the set X with respect to the topology on R2 (and not
with respect to the relative topology on M).

3.1. Local structure. Let us recall the definition of the collision map:
F(r, w) = (r′, w′) means that a point mass that leaves the moving wall
at time r with velocity w relative to the moving wall will have its next
collision with the moving wall at time given (mod 1) by r′ and will
leave the moving wall with relative velocity w′. Recall moreover that
τ :M→ R≥0 is the (lower semi-continuous) function which associates
to (r, w) the time elapsed before the next (possibly grazing) collision
with the moving wall. If one considers the preceding collision rather
than the following one in the above discussion, we obtain the definition
of the inverse map F−1.

We define the singularity set S0 to be the boundary ∂M, i.e.:

S0 = ∂M = {w = 0} ∪ {r ∈ {0, 1}}.
S0 is the set of points in the collision space for which the point mass
either just underwent a grazing collision (when w = 0), or it just left
the moving wall at an instant in which the motion of the wall is not
smooth (when r ∈ {0, 1}).

Let x = (r, w) ∈ M; observe that τ(x) is defined for all x ∈ M.
There are three possibilities: the trajectory leaving the moving wall
at time r with relative velocity w may have its next collision with the
moving wall

(a) with nonzero relative velocity at an instant when the motion
of the wall is smooth. In this case F is well-defined on x and
F(x) ∈ intM =M\ S0.

(b) with zero relative velocity at an instant when the motion of the
wall is smooth. In this case F is well-defined, but might9 be
discontinuous at x (and it turns out that lim sup

x′→x
|dF| = ∞).

We have

F(x) ∈ {r ∈ (0, 1), w = 0} ⊂ S0;

moreover τ is also discontinuous at x.

8The reader familiar with dynamics of dispersing billiards will recognize certain
distinctive features of the geometry of singularities (see e.g. [9, Section 2.10]).

9In fact it will be always be discontinuous, except in the case described by
Lemma 3.14
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(c) when the motion of the wall is not smooth; τ is continuous at
x, but F(x) is not defined (because the post-collisional velocity
is undefined).

We can then define

S+ = S0 ∪ {x ∈M s.t. items (b) and (c) take place}.
The above also applies to the classification of the previous collision,
which leads to the analogous definition of S−. Observe that F (resp.
F−1) is well-defined and smooth on x if and only if x ∈M\S+ (resp.
x ∈ M \ S−). We let S1 = S+ (resp. S−1 = S−) and for n > 0 we
define, by induction:

Sn+1 = Sn ∪ F−1(Sn \ S−) S−n−1 = S−n ∪ F(S−n \ S+).

Finally, let S+∞ =
⋃
n≥0 Sn and S−∞ =

⋃
n≤0 Sn. Notice that, for

any k ∈ Z, the map Fk is well-defined and smooth on x if and only if
x ∈M \ Sk.

Lemma 3.2 (Local structure of singularities). For k > 0 the set Sk\S0

(resp. S−k \ S0) is a union of smooth stable (resp. unstable) curves.
In particular Sk (resp. S−k) is a union of smooth curves tangent10 to
the cone field P (resp. N).

We will prove the above statement for S−k. The analogues for Sk can
be obtained using the involution. Moreover, since the unstable cone is
F -invariant, it suffices to prove the statement for S−1 = S−.

Sub-lemma 3.3. Let x ∈ S− \S0, then the p-slope of S− at x = (r, w)
is given by

B = R0(x) + 1/τ−1(x) > 0.(3.1a)

Equivalently, the slope in collision coordinates is given by

V = −κ(r)− w/τ−1(x) ≤ −K.(3.1b)

Proof. Observe that each curve in S− is formed by trajectories for
which either r−1 = 0, or w−1 = 0. In the first case, such trajectories
draw a wave front which is emitted from a single point, therefore it
is immediate that B+

−1 = ∞. We claim that also in the second case
B+
−1 =∞, which then immediately implies equations (3.1) using (2.5).

In fact consider two nearby trajectories which leave the wall with zero
relative velocity at times r and r′ = r + δr. Let v and v′ = v + δv be
the corresponding outgoing velocities; observe that δv ∼ κδr. On the

10 Here and below we say that a curve is tangent to a cone field if the tangent
to the curve belongs to the cone at every point.
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other hand, the second trajectory at time r will have height z′ = z+δz,
where δz ∼ κδr2; we conclude that B+

−1 = lim
δr→0

δv/δz =∞. �

Remark 3.4. The corresponding formulae for the slopes of S+ at any
x = (r, w) ∈ S+ \ S0 are

B = −1/τ0(x) < 0(3.2a)

V = κ(r) + w/τ0(x) > K.(3.2b)

3.2. Global structure. We now begin the description of the global
structure11 of the singularity sets S±. Let us first introduce some con-
venient notation.

Let `∗ = max ` = `(0) = `(1). Since ` is strictly convex, it has a
unique critical point (a minimum), which we denote by rC ∈ (0, 1). Set
`∗ = min ` = `(rC) and xC = (rC, 0). Recall that h(r) = −`′(r) and
define

h∗ = minh = lim
r→1

h(r) < 0, h∗ = maxh = lim
r→0

h(r) > 0, h = h∗ − h∗ > 0.

We remark that in this new notation, we can write (1.1) as

∆ = −`∗h
∫ 1

0

`−2(t)dt.

Observe that the point xC is a fixed point for the dynamics: it cor-
responds to the configuration in which the point mass stays put at
distance `∗ from the fixed wall, and the moving wall hits it with speed
0 at times rC + Z. Moreover, points arbitrarily close to xC may have
arbitrarily long free flight times i.e.

lim sup
x→xC

τ(x) =∞.

Next, we identify a special region of the phase space. It is clear
that, if the relative velocity of the point mass at a collision with the
moving wall is sufficiently large, then the particle will necessarily have
to bounce off the fixed wall before colliding again with the moving wall.
On the other hand, if the velocity at a collision with the moving wall is
comparable with the velocity of the wall itself, then the particle could
have two (or a priori more) consecutive collisions with the moving wall
before hitting the fixed wall.12

11 The structure depends on our simplifying hypotheses on the motion of the
wall. If ` had more than one break point, the set S1 would have a much more
complicated structure, although its key features will be similar. Moreover, the
structure of Sk for k > 1 would also be essentially similar in the case we have
multiple breakpoints.

12 In the case of billiards this corresponds to so-called corner series.
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Definition 3.5. A collision with the moving wall is called a recollision
if it is immediately preceded by another collision with the moving wall;
it is called a simple collision otherwise. We denote with D−R ⊂ M
the open set of points corresponding to regular13 recollisions and let
D+

R = F−1D−R .

The following lemma provides a description of the sets D−R and D+
R .

Lemma 3.6. Let S−R = F([rC, 1]× {0}) and S+
R = F−1([0, rC]× {0}).

Then:

(a1) S−R is a connected u-curve that leaves (0, h) with slope −∞ and
reaches xC with slope −κ(rC);

(a2) D−R is the interior of the curvilinear triangle whose sides are
the (horizontal) segment [0, rC] × {0}, the (vertical) segment
{0} × [0, h] and S−R .

(b1) S+
R is a connected s-curve that leaves xC with slope κ(rC) and

reaches (1, h) with slope ∞;
(b2) D+

R is the interior of the curvilinear triangle whose sides are
the (horizontal) segment [rC, 1] × {0}, the (vertical) segment
{1} × [0, h] and S+

R .

xC D+
R

w = h

M+
S

S+
R

M

Figure 3. The recollision region D+
R .

Proof. We prove part (a). Part (b) follows from part (a) and the prop-
erties of the involution. Let U denote the curvilinear triangle in (t, z)-
space bounded by Γ1–the wall trajectory for t ∈ [rC , 1], Γ2–the wall
trajectory for t ∈ [1, rC + 1] and Γ3–the horizontal segment joining
the highest points of those trajectories. By our convexity assump-
tion on ` and elementary geometrical considerations, any trajectory
x = (r, 0) with r ∈ [rC, 1] stays inside U hence its next collision neces-
sarily occurs on the moving wall. This in turn implies that the u-curve

13 That is, we do not take into account points that undergo a grazing collision
on either the recollision or on the previous collision; moreover we do not take into
account collisions with the singular point xC.



DISPERSING FERMI–ULAM MODELS 17

S−R = F([rC, 1]×{0}) is connected (since it cannot be cut by singulari-
ties). It is then trivial to check that F(1, 0) = (0, h), which implies that
S−R connects (0, h) with the fixed point xC. Our statements about the
tangent slope at (0, h) and xC immediately follow from (3.1b) observing
that

lim
r→1

τ((r, 0)) = 0 lim
r→r+

C

τ((r, 0)) = 1.

It remains to prove (a2). First, consider a collision that occurs at
a point (r, w) with r ∈ (rC, 1]: the incoming trajectory lies above the
tangent to ` at r, which, in turn, lies above the graph of ` (for r′ < r)
by convexity of `. In particular it is above the graph of ` at time rC,
that is, it gets above the maximal height of the wall and its velocity
at time rC is negative. Hence, necessarily, the preceding collision will
occur with the fixed wall, proving that D−R ⊂ [0, rC] × R+. It remains
to check that any point in [0, rC]× R+ lying below S−R corresponds to
a recollision, whereas any point lying above S−R corresponds to a single
collision. So pick r ∈ [0, rC]. By (a1) there is r∗ ∈ [rC, 1] such that
F(r∗, 0) = (r, w∗) ∈ S−R . Let Γ be the trajectory from (r∗, 0) to (r, w∗)
and V ⊂ U be the region bounded by Γ1,Γ2, and Γ. There are two
cases.

(i) w ≤ w∗. Then the backward trajectory of (r, w) is contained in
V and so it crosses Γ1 before colliding with the fixed wall.

(ii) w ≥ w∗. Then the backward trajectory of (r, w) is above Γ so if
it crossed Γ1 this would happen at some time r′ < r∗. However
by convexity, any orbit starting at time r′ lies strictly above Γ
so it can not hit the moving wall at time r.

This concludes the proof. �

Remark 3.7. The above lemma implies that clD+
R ∩ clD−R = {xC},

i.e. the number of consecutive collisions with the moving wall is at
most 2 (except for the singular point xC, which is a fixed point of the
dynamics).

Remark 3.8. Let x0 = (r0, w0); if x0 6∈ clD+
R , then τ(x0) satisfies the

bound:
2`∗

w1 + h(r1)
=

2`∗
w0 − h(r0)

≤ τ(x0) ≤ 2`∗

w0 − h(r0)
=

2`∗

w1 + h(r1)
.(3.3)

(3.3) follows since w0−h(r0) = w1+h(r1) is the post-collisional absolute
velocity of the point mass and `∗ ≤ `(r) < `∗. Observe moreover
that w0 − h(r0) > 0, otherwise the next collision would certainly be a
recollision, since the absolute velocity would be non-positive. On the
other hand, if x ∈ D+

R , τ(x) may be arbitrarily small.
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We record in the following lemma an observation which will be useful
on several occasions.

Lemma 3.9. If x = (r, w) is so that either τ(x) ≥ 2 or τ−1(x) ≥ 2
then:

x ∈ {w < C#τ
−1/2, |r − rC| < C#τ

−1/2}.

Proof. It suffices to prove the result under the assumption τ(x) ≥ 2,
since the other case follows by applying the involution. Since τ(x) ≥ 2,
in particular x 6∈ clD−R ; hence by (3.3) we gather

(3.4) 0 < w − h(r) ≤ 2`∗/τ.

We also have `(r) − `∗ = O(1/τ), since otherwise (r, w) would be in
the recollision region. Since ` has a critical point at rC, it follows that

|r − rC| ≤ C̄√
τ

giving the second inclusion. It follows that |h(r)| ≤ Ĉ√
τ
.

Now the first inclusion follows from (3.4). �

Define M−
S = cl (M\ clD−R) and M+

S = cl (M\ clD+
R). The curve

S−R (resp. S+
R ) is one among the unstable (resp. stable) disjoint curves

whose union form the set S− (resp. S+); the other curves will cut
M−

S (resp.M+
S ) in countably many connected components, as we now

describe14. Let us first introduce some convenient notation: we define
the left boundary ∂lM±

S = {(r, w) ∈ ∂M±
S s.t. r ∈ [0, rC]} and the

right boundary ∂rM±
S = {(r, w) ∈ ∂M±

S s.t. r ∈ [rC, 1]}.

Lemma 3.10. There exist countably many C1-smooth unstable curves
{S−ν }∞ν=0 with the following properties

(a) S−ν ∩ S−ν′ = ∅ if ν 6= ν ′.
(b) S− = S−R ∪

⋃∞
ν=0 S−ν .

(c) S−0 is unbounded: its left endpoint approaches (0,∞) and the
other endpoint is in ∂rM−

S .
(d) S−ν for ν > 0 is compact and joins ∂lM−

S to ∂rM−
S .

(e) S−ν approaches xC for ν →∞; more precisely:

S−ν ⊂ {w < C#ν
−1/2, |r − rC| < C#ν

−1/2}.
(f) There exists c > 0 such that S−ν is tangent to the cone

Ĉuν = {−κ(r)− cν−3/2 ≤ δw/δr ≤ −κ(r)}.
The corresponding statements hold for S+ using the involution.

14The structure of singularities for dispersing Fermi–Ulam Models is remarkably
similar to the one described in [9, Section 4.10] for the singularity portrait in a
neighborhood of a singular point of a billiard with infinite horizon. We refer to
the discussion presented there for further insights; here we provide a qualitative
description which however suffices for our purposes.
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Proof. A point x′ can be in S− for two different reasons: its previous
collision with the moving wall x = (r, w) may have occurred either at
an integer time (item (c) in the definition of S0) or at a non-integer
time with a grazing collision (item (b) in the definition of S0). If x′ is a
recollision, then x′ ∈ S−R (and hence r ∈ [rC, 1] and w = 0), otherwise
we can choose x ∈ ∂lM+

S .
For any ν ∈ Z≥0 define S0

ν = {x ∈ ∂lM+
S s.t. τ(x) ∈ [ν, ν + 1]}.

Notice that F is smooth in the interior of these curves15. We conclude
that F(intS0

ν ) is a C1-smooth unstable curve. Define

S−ν = clF(intS0
ν ).

Items (a) and (b) then follow by construction.
Next, it is easy to see that if w is sufficiently large, then the trajectory

will bounce off the fixed wall and hit back the moving wall after a short
time τ ∈ (0, 1); in particular S0

0 is unbounded while S0
ν and S−ν are

bounded for ν > 0.
Next, as w increases to ∞, the point F(0, w) = (r′, w′) where r′ is

small and w′ is large. On the other hand when x ∈ S0
0 approaches

the (only) boundary point of S0
0 , the point Fx will necessarily tend to

∂rM−
S . This proves item (c). Item (d) follows from analogous argu-

ments.
Item (e) follows by applying Lemma 3.9 to an arbitrary point in S−ν .

Finally, item (f) follows from (3.1b) and item (e). �

Lemma 3.11 (Continuation property). For each n 6= 0, every curve
S ⊂ Sn \ S0 is a part of some monotonic continuous (and piecewise
smooth) curve S∗ ⊂ Sn \ S0 which terminates on S0 = ∂M.

Proof. It suffices to prove the property for n > 0, since the case n < 0
follows by the properties of the involution. The statement holds for
n = 1 by Lemma 3.10; the statement then follows by induction by
definition of Sn: assume that S ⊂ Sn+1 \Sn. Then, by construction, S
terminates on either S0 or Sn. However if it terminates on Sn, then by
inductive hypothesis it can be continued as a piecewise smooth curve
to S0. �

The curves {S±ν }ν≥0 cut M±
S in countably many connected compo-

nents which we denote with {D+
ν } (resp. {D−ν }) and we call positive

(resp. negative) cells. Indexing is defined as follows: for ν > 0 we let
D±ν denote the component whose boundary contains S±ν−1 and S±ν and

15 Smoothness is obvious unless (0, 0) ∈ intS0ν ; even in this case it holds true,
and follows from arguments identical to the ones described in [9, after Exercise
4.46]
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let D±0 denote the remaining cell. The cells D+
ν admit also an intrinsic

definition as

D+
ν = int {x ∈M+

S s.t. r(x) + τ0(x) ∈ (ν, ν + 1)};(3.5)

observe that each positive cell is indexed by the number of boundaries
of fundamental domains which are crossed by the trajectory between
the current and the next collision. A similar intrinsic characterization
can be given for the negative cells D−. We summarize in the following
lemma some properties of positive cells that follow from our above
discussion.

Lemma 3.12 (Properties of positive cells).

(a) The cells {D+
ν }ν≥0 are open, connected and pairwise disjoint.

(b) We have

intM+
S \ S

+ =
∞⋃
ν=0

D+
ν .

(c) clD+
ν ∩clD+

ν′ = ∅ if |ν−ν ′| > 1; moreover if x̄ ∈ clD+
ν ∩clD+

ν+1,
we have either

lim
D+
ν 3x→x̄

Fx ∈ {1} × R+ lim
D+
ν+13x→x̄

Fx ∈ {0} × R+,

or

lim
D+
ν 3x→x̄

Fx ∈ [0, 1]× {0} lim
D+
ν+13x→x̄

Fx ∈ S−R .

(d) for any ν̄ there exists ε so that the ball of radius ε centered at
xC does not intersect

⋃ν̄
ν=0D+

ν .
(e) for ν > 1, we have D+

ν ⊂ {w < C#ν
−1/2, |r − rC| < C#ν

−1/2}.

Remark 3.13. Using the involution, the above lemma also describes
(with due modifications) the negative cells D−ν = FD+

ν .

Despite the fact that the singular point xC is accumulated by sin-
gularities (both forward and backward in time), we have the following
result.

Lemma 3.14. For every ε > 0 there exists a δ > 0 so that

F(B(xC, δ) \ S1) ⊂ B(xC, ε).

Proof. If x ∈ B(xC, δ) \ S1 there are two possibilities; either x ∈
B(xC, δ) ∩ D+

R or x ∈ B(xC, δ) ∩ D+
ν for some large ν. In the for-

mer case F is continuous in D+
R and lim

D+
R3x→(rC,0)

Fx = xC, so we only
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need to check the latter case. However, if x ∈ D+
ν , then, by defini-

tion Fx ∈ D−ν and we conclude the proof since the cells {D−ν } also
accumulate to xC by Lemma 3.12(e) and Remark 3.13. �

In view of Lemma 3.10, a u-curve W can in principle be cut by
singularities of F in countably many connected components.16 The
next lemma ensures that this may only happen in a neighborhood of
the singular point xC.

Lemma 3.15. Let x ∈ M \ {xC}. For any l > 0, the set S l cuts a
sufficiently small neighborhood of x in finitely many connected compo-
nents.

Proof. Assume that for an arbitrarily small ball U 3 x there exists
0 < l′ ≤ l so that U \ S l′−1 has finitely many connected components
and U \ S l′ has infinitely many. We conclude that there exists a con-
nected component U ′ of U \S l′−1 which is cut by S l′ in infinitely many
connected components. By definition F l′−1 is smooth on U ′ and, by
our assumption, F l′−1U ′ intersects infinitely many positive cells D+.
We gather that there exists a sequence xm ∈ U ′ ∩ F−(l′−1)D+

νm , where

νm →∞; by Lemma 3.12 we have F l′−1x′m → xC, which by Lemma 3.14
implies that x′n → xC, that is xC ∈ clU . Since U can be taken to be
arbitrarily small, we conclude that x = xC. �

For l− ≤ 0 ≤ l+, define S l−,l+ = S l− ∪ S l+ : then M\ S l−,l+ is given
by a (countable) union of connected components. A point x ∈ S l−,l+
is said to be a multiple point of S l−,l+ if it belongs to the closure of at
least three such connected components; we denote the set of multiple
points of S l−,l+ by Xl−,l+ .

Lemma 3.16. The singular point xC 6∈ Xl−,l+ for any l− ≤ 0 ≤ l+.

Proof. By Lemma 3.12 we gather that the only connected component
ofM\S1 whose closure meets xC is D+

R . This proves our statement for

l− = 0, l+ = 1. Now consider a connected component Q̂ of M\ S0,2;

by definition there exist ν, ν ′ ∈ {R, 0, 1, · · · } so that Q̂ = D+
ν ∩F−1D+

ν′ .

If cl Q̂ 3 xC, then by the above discussion ν = R, which by Remark 3.7
implies that ν ′ 6= R. But then we would have clF−1D+

ν′ 3 xC, which by
Lemma 3.14 implies that clD+

ν′ 3 xC, contradicting Lemma 3.12. The
statement for general l− and l+ then follows by applying Lemma 3.14.

�

16 This problem is certainly familiar to the reader acquainted with the theory of
dispersing billiards with infinite horizon.
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4. Accelerated Poincaré map.

The analysis of Section 2 shows that expansion of the collision map
F is small for large energies. That is, the hyperbolicity of F is rather
weak in this region. It is thus convenient to consider an induced map,
obtained by skipping over collisions that happen in the same fundamen-
tal domain for `. In this section we discuss the resulting accelerated
map F̂ . In particular, we will recall the results of [17], where the large
energy regime for piecewise smooth Fermi–Ulam Models was studied
in detail. At the same time, we will also present some new technical
estimates which are needed for the proof of our Main Theorem.

4.1. Number of collisions per period. Recall the definition of posi-
tive and negative ν-cells given in the previous section (see (3.5)). Define
(see Figure 4):

M̂ = cl
(
M\ clD−0

)
.(4.1)

M

M̂

S−0

D−0

Figure 4. The inducing set M̂; note that the geometry
can be slightly different depending on the properties of
`. In fact, it is possible for S−0 to terminate at {w = 0}
rather than at {r = 1}.

Remark 4.1. Observe that ∂M̂ is the union of vertical curves, horizon-

tal curves and the unstable curve S−0 . In particular, each curve in ∂M̂
is compatible with the cone field N.

Let E0 = intM and, for any n ∈ N, define

En = {x ∈M \ Sn−1 s.t. Fkx ∈ D+
0 for any 0 ≤ k < n}.
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Observe that, by construction, En ⊃ En+1 and En ⊃ FEn+1; since
D+

0 ∩ S1 = ∅, we conclude by induction that En ∩ Sn = ∅.
For any n > 0, define E∗n = En−1 \ En. Observe that, if x ∈ E∗1 \ S1,

then F is well defined and smooth at x, and moreover Fx ∈ M̂; more
generally, for any k ≥ 1, if x ∈ E∗k \Sk, then the map Fk is well defined

and smooth at x, and moreover Fkx ∈ M̂. For any x ∈ intM, define:

N̂(x) =
∑
k≥0

1Ek(x) = max{n ≥ 0 s.t. En 3 x}.

Observe that, if x ∈ E∗n, our construction implies that N̂(x) = n.
Finally, let

S̃+ = S0 ∪
⋃
k≥0

(Sk+1 ∩ Ek).

Observe that, for any k we have E∗k ∩ S̃+ = E∗k ∩ Sk and ∂E∗k ⊂ S̃+. In

particular, for any k > 0, the function x 7→ min{k, N̂(x)} is constant
on each connected component of M\ Sk. Moreover, by construction,
S̃+ is a countable union of C1-smooth stable curves with

S+ ⊂ S̃+ ⊂ S+∞.

By the above considerations, we conclude that if x ∈ M \ S̃+ and

N̂(x) < ∞, then F N̂(x) is well-defined and smooth at x and F N̂(x)x ∈
M̂. We now proceed to show that N̂ is finite for any x ∈ intM.

Lemma 4.2. The sets (E∗n)n>0 form a partition (mod 0) of M. More-
over for any x = (r, w) ∈ intM:

1 ≤ N̂(x) ≤ C#w +N#;(4.2)

Proof. We claim that for sufficiently large n:

En ⊂ {w ≥ C#n− h∗}.(4.3)

Observe that (4.3) implies that⋂
k≥0

Ek = ∅;

which in particular implies that the sequence (E∗n)n>0 forms a partition
(mod 0) ofM. The estimate (4.2) also immediately follows from (4.3).

We proceed with the proof of our claim. Assume x ∈ En and let
xk = (rk, wk) = Fkx. By construction, we have for any 0 ≤ k < n
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that xk ∈ D+
0 , i.e. rk + τ(xk) ∈ (0, 1). By induction, this implies

rn = r0 +
∑n−1

k=0 τ(xk) < 1. In particular

n−1∑
k=0

τ(xk) < 1.

On the other hand, since D+
0 ∩ clD+

R = ∅, if (r, w) ∈ D+
0 , we can use

the lower bound in (3.3), which gives

(4.4) τ(r, w) ≥ 2`∗/(w − h(r)).

Let vk = wk − h(rk) be the absolute velocity after the k-th collision;
notice that since in particular xk 6∈ D+

R for 0 ≤ k < n we have vk > 0;
moreover, trivially vk ≤ v0 + 2kh∗. We conclude that

1 >
n−1∑
k=0

τ(xk) ≥
`∗
h∗

n−1∑
k=0

[ v0

2h∗
+ k
]−1

≥ `∗
h∗

log

[
1 +

2h∗n

v0

]
.

Hence,

(4.5) v0 > C#n,

which immediately implies (4.3), since v0 < w + h∗. �

Define Ŝ+ = (S̃+ ∩ M̂) ∪ ∂M̂. Lemma 4.2 implies that the map

F̂ : M̂ \ Ŝ+ → M̂ given by

F̂(x) = F N̂(x)(x),

is well defined and smooth. A completely analogous construction leads
to the definition of a set Ŝ− so that the inverse induced map F̂−1 is

defined for x ∈ M̂ \ Ŝ−. In fact we have that F̂ is a diffeomorphism

F̂ : M̂ \ Ŝ+ → M̂ \ Ŝ−. We can also define N̂− : M̂ \ Ŝ− → Z<0 so

that F̂−1(x) = F N̂−(x)(x). Observe that N̂−(x) = −N̂(F̂−1(x)).

We now proceed to define the singularity set for the map F̂k for any
k ∈ Z. This is completely analogous to the construction carried over

in Subsection 3.1; let Ŝ0 = ∂M̂, Ŝ1 = Ŝ+ (resp. Ŝ−1 = Ŝ−) and for
any n > 0 let

Ŝn+1 = Ŝn ∪ F̂−1(Ŝn \ Ŝ−) Ŝ−n−1 = Ŝ−n ∪ F̂(Ŝ−n \ Ŝ+).

Observe that F̂k is well defined and smooth at x if and only if x ∈
M̂ \ Ŝk. Let furthermore Ŝ+∞ =

⋃
n≥0

Ŝn and Ŝ−∞ =
⋃
n≤0

Ŝn.
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For any n ≥ 0, let us define N̂n : M̂ \ Ŝn → N by induction as

follows. We let N̂0(x) = 0 and, for k ≥ 1, we let

N̂k(x) = N̂k−1(x) + N̂(F̂k−1x).

Observe that by construction we have F̂n(x) = F N̂n(x)(x). Then define

S̃n as follows: x ∈ S̃n if either x ∈ S̃+ or F N̂(x) ∈ Ŝn−1. Then we
can extend the definition of N̂n to M \ S̃n as follows: if n = 1 we

let N̂1(x) = N̂(x); otherwise F N̂(x)(x) ∈ M̂ \ Ŝn−1 and we define

N̂n(x) = N̂(x) + N̂n−1(F N̂(x)x). A similar construction leads to the

definition of N̂−n for n > 0.

Remark 4.3. It follows from our construction that if x = (r, w) is so

that N̂k(x) is defined, then, denoting once again xj = F jx:

N̂k(x) = min{n s.t. r +
n−1∑
j=0

τ(xj) ≥ k}.

Let W be an unstable curve, and n > 0; let W ′ be a connected
component of FnW ; then we can define

n̂(W ′) = max{k s.t. N̂k(x) ≤ n for all x ∈ F−nW ′}.(4.6)

We conclude this subsection with the definition of the fundamental
domains

Dn = intM̂ ∩ E∗n.(4.7)

Notice that our previous discussion shows that

Dn ∩ Sn−1 = ∅(4.8a)

Dn ∩ Ŝ+ = Dn ∩ Sn.(4.8b)

4.2. Dynamics for large energies. In [17] we have proved several

useful properties that the map F̂ satisfies for large values of w. We
collect them in the proposition below. Recall the notation

(rk, wk) = Fk(r, w).

Proposition 4.4 (Properties of F̂ for large energies). There exists

w∗ > 0 so that, if (r, w) ∈ M̂, w ≥ w∗:

(a) there exists C∗ > 1 so that for any 0 ≤ k ≤ N̂(r, w)

wk, wk − h(rk) ∈ (C−1
∗ w,C∗w);(4.9)
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Accordingly, we have17

C−1
∗ w ≤ N̂(r, w) ≤ C∗w.(4.10)

(b) there exists Ĉ so that |wN̂(r,w) − w| ≤ Ĉ.

Corollary 4.5. For any (r, w) ∈ M̂ \ Ŝ+, let (r̂, ŵ) = F̂(r, w); then

|ŵ − w| ≤ C#.

Proof. The proof immediately follows combining Proposition 4.4(b) (for
large w) and (4.2) (for small w). �

In fact, in [17] we constructed a normal form for F̂ for high energies,
which we now proceed to describe. Consider the strip M = [0, 1]×R 3
(τ, I), and for ∆ ∈ R define the piecewise affine map F̂∆ : M → M
given by the formula

(4.11) F̂∆(τ, I) = (τ̄ , Ī), where

{
τ̄ = τ − I mod 1,
Ī = I + ∆(τ̄ − 1/2).

The curves {τ = I mod 1} partition M in a countable number of

fundamental domains that we denote with (D̂n)n∈Z, where the index

n is so that D̂n 3 (1/2, n). Observe that F̂∆ is continuous in each
fundamental domain. In particular, for n ∈ Z let Tn : M → M be the
translation map

Tn : (τ, I) 7→ (τ, I + n);(4.12)

then D̂n = TnD̂0 and if x ∈ D̂n, we have F̂∆ = Tn ◦ F̃∆ ◦ T−n, where
F̃∆ : R2 → R2 is the affine map given by

F̃∆(τ, I) = (τ̃ , Ĩ), where

{
τ̃ = τ − I,
Ĩ = I + ∆(τ̃ − 1/2).

The relevance of the map F̂∆ comes from Theorem 4.6 below. The
theorem is essentially a more detailed statement of [17, Theorem 1].
The reader will have no difficulty to check that [17, Section II] indeed
provides all that is needed to prove Theorem 4.6.

Below the symbol Ok(I−1) denotes a function whose partial deriva-
tives up to order k are O(I−1).

Theorem 4.6. There exist w∗ > 0 and coordinates (τ, I) on the set

M̂ ∩ {w ≥ w∗} so that

17 In fact, the following stronger statement holds: the limit of N̂(r,w)
w exists when

w → ∞ and (r, w) ∈ M̂. However, the weaker estimate (4.10) is sufficient for our
current purposes.
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(a) C−1
# w < I < C#w; moreover, there exists C > 0 so that if

(r, w) ∈ Dn, and (r′, w′) ∈ Dn′ and w′−w > C, then necessarily
n′ > n.

(b) the singularity lines {r = 0} and F{r = 0} are given in (τ, I)
coordinates by {τ = 0} and {τ = 1 +O5 (I−1)} respectively;

(c) if x ∈ Dn then F̂ in (τ, I)-coordinates is a O5(I−1)-perturbation
of Tn ◦ F̃∆ ◦ T−n where ∆ is given by (1.1).

The coordinates (τ, I) will be called adiabatic coordinates.

In particular, the above theorem implies that if n is sufficiently large,
T−nDn is contained in a C#n

−1-neighborhood of D̂0. We will often drop

the subscript ∆ from F̃ when this will not cause confusion.
For future reference we include the formulas relating the adiabatic

coordinates (τ, I) to the original coordinates (r, w). Namely we have

(4.13a) I = w`(r) + a(r) +O5(w−1),

(4.13b) τ = θI +O5(w−1),

(4.13c) θ =

∫ t

0

`−2(s)ds+
b(r)

w
+O5(w−2)

where a and b are smooth functions whose precise value will not be
important for us.

The next result, proven in [17], provides the first major step toward
the proof of the ergodicity of dispersing Fermi–Ulam Models.

Theorem 4.7. ([17, Theorem 4]) Dispersing Fermi–Ulam Models are
recurrent.

4.3. Bounds for p-slopes. We record in this section several useful
estimates.

Lemma 4.8. There are constants c1, c2 > 0 such that for any w∗ suf-
ficiently large, any x = (r, w) ∈ M, if B− ≥ 0 (and in particular for
any unstable vector):

(a) If w ≥ w∗ then (B−)′ ≥ K/w.
(b) If w ≤ w∗, then

(B−)′ ≥ c1

1 + τ
.

Furthermore, if x 6∈ D+
R , we also have the upper bound

(B−)′ ≤ c2

1 + τ
.
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Proof. Assume w∗ > 2K and so large that w ≥ w∗ implies that τ ≤ 1.
In this case, (2.4) implies:

(B−)′ = ((B− +R)−1 + τ)−1 ≥ ((B− +R)−1 + 1)−1

≥ (R−1 + 1)−1 = (w/2κ+ 1)−1 ≥ Kw−1.

This proves item (a). Next suppose that w ≤ w∗ somewhere on W .
Then, unless x ∈ D+

R , there is a constant δ = δ(w∗) such that τ ≥ δ.
In order to prove (b), rewrite

(4.14) (B−)′ =
1

τ
− 1

τ(1 + τ(B− +R))
.

Hence

1

τ

(
1− 1

1 + δK

)
≤ (B−)′ ≤ 1

τ
,

which gives both the upper and lower bounds. If, on the other hand
x ∈ D+

R , then τ ≤ 1 and by Lemma 3.6 we have w ≤ h; proceeding as
in (a), we obtain the lower bound provided that c1 ≤ (h/2K+1)−1. �

Recall that B−k denotes the value of B− of the k-th iterate of the
element under consideration.

Lemma 4.9. There are constants c3, c4, ε̄ such that the following esti-
mates hold for w ≥ w∗.

(a) i. If B− ≥ ε̄ then (B−)′ ≥ ε̄
ii. if B− ≤ ε̄ then (B−)′ ≥ B− + c3

w
.

(b) i. If 1/B− ≥ ε̄ then 1/(B−)′ ≥ ε̄
ii. if 1/B− ≤ ε̄ then 1/(B−)′ ≥ 1

B− + c3
w

.

(c) i. If ε̄ ≤ B−0 ≤ 1
ε̄

then for any n ≤ w, ε̄ ≤ B−n ≤ 1
ε̄
.

ii. If B−0 ≤ ε̄ then for n ≤ w, we have B−n ≥ min(nc4
w
, ε̄).

iii. If B−0 ≥ 1
ε̄

then for n ≤ w, we have B−n ≤ max( w
nc4
, 1/ε̄).

Proof. In this proof we drop the superscript − from B for ease of no-
tation.
(a) We have

B′ − B =
2κ
w

(1− τB)− τB2

1 + τ
(
B + 2κ

w

)
so (a)ii follows from the fact that c−1

w
≤ τ ≤ c

w
, which in turn follows

from (3.3). Since the function B 7→ R+B
1+τ(R+B)

is increasing (see (4.14))

B ≥ ε̄ implies B′ ≥ R+ε̄
1+τ(R+ε̄)

≥ ε̄ where the last inequality relies on the

already proven part (a)ii. This proves (a)i.
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(b) Let β = 1/B. Then β′ = τ + β

1+2βκ
w

whence

β′ − β = τ − 2β2κ

w + 2βκ
.

Thus (b)ii follows from the fact that τ ≥ c
w

. Since the function

β 7→ τ + β

1+2βκ
w

is increasing, β ≥ ε̄ implies β′ ≥ τ + ε̄

1+2βκ
w

≥ ε̄ where

the last step relies on the already proven part (b)ii. This proves (b)i.
(c) Item i immediately follows from (a)i and (b)i. By part (a)i we can

conclude that if Bk ≥ ε̄ for some 0 < k ≤ n, then necessarily Bn ≥ ε̄.
We can therefore assume that Bk < ε̄ for all 0 < k ≤ n. In this case
part (a)ii implies that Bk+1 ≥ Bk + c3/wk. Combining this with (4.9)
we obtain Bn ≥ B + nc3/w, proving (c)ii. The upper bound follows by
analogous considerations involving B−1 and part (b). �

It is convenient to consider smaller invariant cones, which are ob-
tained by iterating the dynamics on Cu and Cs. First the cones will be

defined on M̂, then they will be extended to M using the dynamics.
Observe that since such cones are defined dynamically and the dynam-
ics is only defined almost everywhere, we will only be able to define the
cones almost everywhere.

Definition 4.10. Let x ∈ M̂ \ Ŝ+; define

C̃s(x) = F̂−1
∗ |F̂xC

s;

if x ∈M \ S̃+, then F N̂(x)x ∈ M̂, and we can define

C̃s(x) = F−N̂(x)
∗ |FN̂(x)xC̃s(F N̂(x)x).

Observe that C̃s(x) is defined almost everywhere onM; with a similar

procedure we can define C̃u(x) for a.e. x ∈M.
An unstable (resp. stable) curve will be called mature if it is tangent

to C̃u (resp. C̃s). In particular, W ⊂ M̂\Ŝ− is a mature unstable curve

if F̂−1W is unstable; likewise V ⊂ M̂ \ Ŝ+ is a mature stable curve if

F̂V is a stable curve.

Combining Lemma 4.9 with Theorem 4.6 and using Lemma 4.8 we
obtain the following result.

Corollary 4.11. There are constants w̄, b̄ such that the following holds.
Let W be a mature unstable curve, then

(a) for all n ≥ 0 such that wn ≥ w̄, or if xn ∈ D−R , we have B−n ≥ b̄.
(b) for all n ≥ 0 such that xn 6∈ D−R we have B−n ≤ b̄−1.
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Note that combining Corollary 4.11 with (2.6) yields that there is a
constant C̄ > 1 such that for sufficiently large w:

C̃u ⊂
{
−C̄w <

δw

δr
< −K − C̄−1w

}
(4.15a)

C̃s ⊂
{
K + C̄−1w <

δw

δr
< C̄w

}
.(4.15b)

In the recollision region D−R Corollary 4.11 does not provide an upper
bound on B−. In fact, in this region B− may in fact grow arbitrarily
large. However, a simple inspection of (2.4) shows that for any L > 0
sufficiently large there exists δ > 0 so that if (B−)′ > L then w < δ and
τ < δ. We gather that if (B−)′ is large, then x lies in a neighborhood of
the point (1, 0). The analysis in Lemma 3.6 allows then to conclude that
x′ lies in a neighborhood of (0, h). We summarize the above observation
for future use in the following lemma.

Lemma 4.12. There exists B > 0 so that if W is a mature unstable
curve passing through x = (r, w) with pre-collisional p-slope B−, then
either B− < B or w > B−1.

4.4. The α±-metrics. We now proceed to define a pair of convenient
metrics on M, which we denote with | · |α+ and | · |α− and call the
α+-metric and the α−-metric, respectively. Let α0, α1 > 0 be small
constants which will be specified later (see (4.32) and (4.37)). For
x = (r, w), we define the functions

α±(x) = exp(α01D∓R
(x))(1 + α1 · w),

where 1D−R
(resp. 1D+

R
) is the indicator function of D−R (resp. D+

R). For

dx ∈ TxM we set (recall that κ(r) = `′′(r))

|dx|α± = α±(x)(κ(r)|dr|+ |dw|).

Note that since w = dz
dr

we obtain the following relations with the
Euclidean metric |dx|2

E
= dr2 + dw2 and the p-metric |dx|p defined at

the beginning of Section 2.5.

|dx|α± = α±(x)|dx|p
κ(r) + |V|

w
=(4.16a)

= α±(x)|dx|E
κ(r) + |V|√

1 + V2
.(4.16b)

Lemma 4.13. Let |·|E(τ,I) be the Euclidean metric in (τ, I)-coordinates

on M̂.
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(a) There exists c > 0 so that for any vector dx ∈ TxM̂ we have

|dx|α± ≥ c|dx|E(τ,I).(4.17)

(b) For each A > 0 there is a constant C > 0 such that if

(4.18) A−1 ≤ 1

w

|δw|
|δr|

≤ A, δr δw < 0

then

(4.19) C−1w|dx|E(τ,I) ≤ |dx|α± ≤ Cw|dx|E(τ,I).

(c) There is a constant A such that each vector in C̃u satisfies

(4.18). Consequently (4.19) holds on C̃u.

Proof. Without loss of generality, we assume that max(|δw|, |δr|) = 1.
Using (4.13) we get

(4.20) δI = `δw +
(
w ˙̀ + ȧ

)
δr +O(w−1),

(4.21) δτ = θδI + Iδθ +O(w−1) = θδI +
Iδr

`2
+O(w−1).

Hence, both terms are o(w), while |dx|α± is of order w; part (a) follows.
Next, under the assumptions of part (b) we get that |δr| ≤ A/w. It

follows that both leading terms in (4.20) are of order 1 and, moreover,
they have the same sign, since δw and δr have different signs while
˙̀(r) is negative for small r (note that since τ ∈ [0, 1] it follows that
θ = O(1/w)). The foregoing remark also shows that the first term in
(4.21) is O(1/w) while the second term is O(1). Part (b) follows. It

remains to note that (4.18) holds on C̃u due to Corollary 4.11. �

The estimate (4.19) has the following useful consequence. Let

(4.22) Λ∆ =
T +

√
T 2 − 4

2
, where T = 2−∆

be the leading eigenvalue of dF̂ defined by (4.11).

Corollary 4.14. For each n there are constants Ĉ, w̄ such that if wk ≥
w̄ for k = 0, · · · , n− 1 and dxu ∈ C̃u then

(4.23) |Fn∗ dxu|α+ ≥ ĈΛn
∆|dxu|α+ .

Proof. The discussion following (4.20), (4.21) shows18 that

C̃u ⊂ CIτ := {(δI, δτ) : δIδτ < 0}.
18 Recall that the leading term in (4.21) is the second one and that δw and δr

have different signs.
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It is also straightforward to check that there is a constant C̄ such that
for v ∈ CIτ we have

|(F n
∆)∗v|E(τ,I) ≥ C̄Λn

∆|v|E(τ,I).

Now Theorem 4.6 gives that for any n and sufficiently large w̄ (de-
pending on n)

|Fn∗ v|E(τ,I) ≥
C̄

2
Λn

∆|v|E(τ,I)

and (4.23) follows from (4.19). �

The α± metrics are Finsler metrics and they have the advantage of
being Lyapunov metrics, in the sense that they are strictly monotone
for the (forward or backward , respectively) iterations of F̂ , as will be
proven in Proposition 4.15 below.

For x = (r, w) ∈M, denote x′ = (r′, w′) = Fx and for dx ∈ TxM we

let dx′ = F∗dx ∈ Tx′M. Likewise, for x ∈ M̂, we denote x̂ = (r̂, ŵ) =

F̂(x) and for dx ∈ TxM̂ we let dx̂ = F̂∗dx ∈ Tx̂M̂.

Proposition 4.15. The α±-metrics satisfy the following properties:

(a) | · |α± is (uniformly) equivalent to (1 + α1w)| · |E. In particular
| · |α+ and | · |α− are equivalent to each other.

(b) F satisfies the following expansion estimate for any dx ∈ Cux:

|dx′|α±
|dx|α±

≥ α±(x′)

α±(x)

(
1 + τ

2K
w′

)
(4.24a)

≥ e−α0
1 + α1w

′

1 + α1w

(
1 + τ

2K
w′

)
;(4.24b)

moreover if w′ is sufficiently small, for any dx ∈ Cux:

|dx′|α±
|dx|α±

≥ C#

w′
.(4.25)

Additionally for any sufficiently large w∗ > 1 there exists Λ∗ > 1
so that for any x = (r, w) ∈ M \ S̃+ with w ≥ w∗, dxu ∈ Cux
and 0 ≤ n ≤ N̂(x):

|Fn∗ dxu|α+ < Λ∗|dxu|α+ .(4.26)

(c) If α0 and α1 are sufficiently small, then the map F̂ is uniformly
hyperbolic with respect to the α±-metrics and the expansion is
monotone in the following sense: there exists Λ > 1 so that for

any x ∈ M̂, dxu ∈ Cux and any dxs ∈ Csx:

|F̂∗dxu|α+ > Λ|dxu|α+ |F̂−1
∗ dxs|α− > Λ|dxs|α− .(4.27)
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Proof. Item (a) immediately follows from (4.16b). In order to prove
the remaining items it is convenient to introduce an auxiliary metric,
which we denote with | · |∗ and is given by the expression:

(4.28) | · |∗ = α±(x)−1| · |α± = κ(r)|dr|+ |dw|.
Recall that by (2.10) and (2.4) we have

|dx′|p
|dx|p

= 1 + τB+, (B−)′ =
B+

1 + τB+

where τ = τ(x), B+ = B+(dx), and (B−)′ = B−(dx′). Hence, if dx ∈ Cu
x ,

then (4.16a) and (2.8) give

|dx′|∗
|dx|∗

= (1 + τB+)
w

w′
κ′ − V ′

κ− V
=

1 + τB+

B+

2κ′ + (B−)′w′

w′
=

=

(
1 +

2κ′

(B−)′w′

)
,(4.29)

where for ease of notation we denoted κ = κ(x) (resp. κ′ = κ(x′)) and
V = V(dx) (resp. V ′ = V(dx′)). Since B−′ ≤ 1/τ we conclude:

|dx′|∗
|dx|∗

≥ 1 + τ
2K
w′
,(4.30)

from which equations (4.24) immediately follow. In order to prove (4.25),
notice that if w′ is sufficiently small, then Lemma 4.12 implies that
(B−)′ is bounded from above. Using (4.29) then immediately im-
plies (4.25).

It remains to show (4.26). Notice that by Proposition 4.4(a) and
Corollary 4.11(a), we can choose w∗ so that B−n is bounded from below

for any 0 ≤ n ≤ N̂(x). Using (4.29) we thus gather that, for some
uniform Λ∗1 > 1:

|dxn|∗
|dx|∗

=
n−1∏
k=0

(
1 + Cw−1

k

)
≤ Λ∗1,

where in the last step we used Lemma 4.2. Then once again using
the definition of | · |α+ , we obtain (4.26) and we conclude the proof of
item (b). Observe moreover that (4.30) gives the trivial bound

|dx̂|∗ ≥ |dx′|∗ ≥ |dx|∗.

We proceed now to the proof of item (c). We first prove the statement
for unstable vectors. Let

|dx|∗∗ = exp(α01D−R
(x))|dx|∗.
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We now claim that we can choose α0 > 0 so that we have

|dx̂|∗∗
|dx|∗∗

≥ exp(α0).(4.31)

If the above bound holds, we obtain item (c). In fact, observe that

|dx̂|α+

|dx|α+

=
1 + α1ŵ

1 + α1w

|dx̂|∗∗
|dx|∗∗

.

Using Corollary 4.5, we can choose α1 > 0 so small that

min
(r,w)∈M̂

1 + α1ŵ

1 + α1w
> exp(−α0/2).(4.32)

(4.32) together with (4.31) yields the first estimate of (4.27) with Λ =
exp(α0/2). The corresponding estimate for stable vectors is obtained
by applying the involution, and observing that the involution maps the
α−-metric for F to the α+-metric for F−1. This concludes the proof
of (c).

It remains to prove (4.31). First of all observe that, by definition

|dx̂|∗∗
|dx|∗∗

= exp(α0(1D−R
(x̂)− 1D−R

(x)))
|dx̂|∗
|dx|∗

.

Notice moreover that if x ∈ D+
R we have, by definition, Fx ∈ D−R ⊂ M̂

which yields x̂ = x′. Since D−R ∩ D
+
R = ∅, we conclude that

|dx̂|∗∗
|dx|∗∗

= exp(α0)
|dx′|∗
|dx|∗

≥ exp(α0) for any x ∈ D+
R .

On the other hand, if x 6∈ D+
R we have

|dx̂|∗∗
|dx|∗∗

≥ exp(−α0)
|dx̂|∗
|dx|∗

.

It thus suffices to show that we can choose α0 so that

|dx̂|∗
|dx|∗

≥ exp(2α0) for any x 6∈ D+
R .(4.33)

In order to do so, we combine (3.3) and (4.30) to obtain

|dx′|∗
|dx|∗

≥ 1 +
4K`∗

w′(w′ + h(r′))
for any x 6∈ D+

R .(4.34)

Let us fix w∗ > 0 sufficiently large to be specified later and consider
two cases.

(1) If w < w∗, by (4.34) we can find Λ0 > 1 such that if x 6∈ D+
R ,

(4.35) |dx̂|∗ > Λ0|dx|∗.
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(2) Next suppose that w ≥ w∗ large. In this case the expansion of
just one iterate of F does not suffice and one needs to take into account
several iterates. Namely, (4.29) and Lemma 4.9(c) give

|dx̂|∗
|dx|∗

>
|dxC−1w|∗
|dx|∗

> 1 +
C−1

w

C−1w∑
k=0

[B−k ]−1 > Λ1(4.36)

for some uniform Λ1 > 1.
Combining (4.35) and (4.36) we obtain (4.33) provided that

exp(2α0) < min{Λ0,Λ1}.(4.37)

This completes the proof of the proposition. �

We note the following bound: for any L > 0 there exists Cα± > 1 so
that for any unstable (or stable) curve W such that |W |E < L, and for
any x′, x′′ ∈ W :

C−1
α± ≤

dWα±(x′, x′′)

dα±(x′, x′′)
≤ Cα± .(4.38)

In fact, since unstable (resp. stable) curves are decreasing (resp. in-
creasing), we have:

1 ≤ dWE (x′, x′′)

dE(x′, x′′)
≤ 2.

Thus (4.38) follows by the equivalence of dα+ with (1 +α1w)dE proved
in Proposition 4.15(a) and the bound on the length of W .

Remark 4.16. From now on, in an attempt to simplify the notation, we
drop the superscripts ± from the α±-metric and we will always consider
α = α+.

We now establish some properties of the α-metric which will be useful
in the sequel. Given a curve W and two points x′, x′′ ∈ W we denote
with dWα (x′, x′′) (resp. dWE (x′, x′′)) the α-length (resp. Euclidean length)
of the subcurve of W bounded by x′ and x′′.

Lemma 4.17. For any L > 0 there exists C > 0 so that the following
holds. Let n > 0 and W ⊂ M \ Sn be an unstable curve. Let Wk =
FkW and assume that |Wn|E < L. Let x′, x′′ ∈ W and denote x′k =
Fkx′ (likewise for x′′); then:

dWα (x′0, x
′′
0) ≤ CdWn

α (x′n, x
′′
n)(4.39a)

n∑
j=0

dWk
E (x′k, x

′′
k) ≤ CdWn

α (x′n, x
′′
n).(4.39b)
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Proof. Since W ⊂ M \ Sn, we already observed that the function

x 7→ min(n, N̂(x)) must be constant on W . Let N̂(W,n) denote this
constant value. Let us begin by proving an auxiliary result.

Sub-lemma 4.18. There exists C > 0 such that if n′ ≤ N̂(W,n) and
|Wn′ |E < L, then

dWα (x′0, x
′′
0) ≤ CdWn′

α (x′n′ , x
′′
n′).(4.40)

Proof. We consider two cases. Let x′0 = (r′0, w
′
0) and choose w∗ suffi-

ciently large.
(a) Assume w′0 ≤ w∗: Lemma 4.2 gives a uniform upper bound on

N̂(x′0) (hence on N̂(W,n)). Notice that, even if we do not assume
an upper bound on the Euclidean length of W0, we have for any x =
(r, w) ∈ W0.

w ≤ w∗ + 2N̂h + L;

Otherwise Fn′x = (rn′ , wn′) would satisfy wn′ > w∗+ N̂h+L, but this
is impossible by construction, since w′n′ ≤ w∗ + n′h. and we assume
|Wn′ |E < L. We now apply Proposition 4.15(b) and conclude:

dW0
α (x′0, x

′′
0) ≤ en

′α0(1 + α1(w∗ + L+ 2N̂h)) · dWn′
α (x′n′ , x

′′
n′)

≤ CdWn′
α (x′n′ , x

′′
n′),

which yields the desired result.
(b) If w′ > w∗, then Proposition 4.4(a) ensures that w′k/w

′
0 ∈ (C−1, C)

for any 0 ≤ k ≤ N̂(W,n). Since |Wn′|E < L, applying Proposi-
tion 4.4(a) again (to the inverse map) we conclude that a similar
bound holds for every w0 on W0. Since w∗ is chosen sufficiently large,
α(xk) = 1 + α1 · wk for any xk on the unstable curve joining x′k to x′′k.
Iterating (4.24a) we thus find, for unstable vectors tangent to W and
Fn′W :

|dxn′|α
|dx0|α

≥ α(xn′)

α(x0)
.

This yields the desired result, since the ratio is uniformly bounded from
below (once again since wn′/w0 ∈ (C−1, C)).

We thus proved (4.40). �

In order to obtain (4.39a), it suffices to observe that given W ⊂
M \ Sn, we can always write Fn = Fn+ ◦ F̂ l ◦ Fn− for some l ≥ 0,

n− = N̂(W,n) and n+ ≤ N̂(Wn−n+). Then (4.39a) follows from (4.40)

and from the uniform hyperbolicity of F̂ .
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The proof of the second estimate follows along similar lines. First
we once again decompose Fn = Fn+ ◦ F̂ l ◦ Fn− and then correspond-
ingly we divide the sum into blocks where each block corresponds to
one iteration of F̂ , or by Fn− and Fn+ for the first and last block
respectively.

Let 0 ≤ m < n be the starting index of some block and let k ≤
N(x′m). We claim that:

(4.41)
m+k∑
j=m

d
Wj

E (x′j, x
′′
j ) ≤ CdWm+k

α (x′m+k, x
′′
m+k).

In order to prove the claim, we again consider two cases.
(a) Assume w′m ≤ w∗. Then by Proposition 4.15(a) dE and dα are

equivalent for small energies and by (4.39a) we obtain

m+k∑
j=m

d
Wj

E (x′j, x
′′
j ) ≤ C

m+k∑
j=m

dWj
α (x′j, x

′′
j ) ≤ CkdWm+k

α (x′m+k, x
′′
m+k)

which proves (4.41) since once again k is uniformly bounded.
(b) If w′m > w∗ there might be many bounces during each period

of the wall, i.e. k is not uniformly bounded. Then using Proposi-
tion 4.15(a), (4.24a), Lemma 4.2 and Proposition 4.4, together with (4.39a)
we have
m+k∑
j=m

d
Wj

E (x′j, x
′′
j ) ≤ C̄

[
m+k∑
j=m

d
Wj
α (x′j, x

′′
j )

w′j

]

≤ ¯̄CdWm+k
α (x′m+k, x

′′
m+k)

N̂(x′m)

w′m
≤ ¯̄̄
CdWm+k

α (x′m+k, x
′′
m+k).

This proves that (4.41) holds also in case (b).
By (4.41) we can write

n∑
j=0

d
Wj

E (x′j, x
′′
j ) ≤ C

l∑
l′=0

d
F̂ lWn−
α (F̂ l′x′n− , F̂

l′x′′n−) + CdWn
α (x′n, x

′′
n).

By the uniform expansion of the α-metric shown in Proposition 4.15(c)
the sum on the right hand side is a geometric sum, whence:

n∑
j=0

d
Wj

E (x′j, x
′′
j ) ≤ Cd

Wn−n+
α (x′n−n+

, x′′n−n+
) + CdWn

α (x′n, x
′′
n)

from which we conclude the proof using once again (4.39a). �

Using the properties of the involution and the fact that the α±-
metrics are equivalent to each other, we obtain the following corollary.
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Corollary 4.19. For any L > 0, there exists C > 0 so that the fol-
lowing holds. Let n > 0 and W ⊂ M \ Sn be a curve so that FnW
is a stable curve. Let Wk = FkW and assume that |Wk|E < L for all
0 ≤ k ≤ n. Let x′, x′′ ∈ W and denote x′k = Fkx′ (likewise for x′′).
Then the following estimates hold.

dWn
α (x′n, x

′′
n) ≤ CdWα (x′0, x

′′
0)(4.42a)

n∑
k=0

dWk
E (x′k, x

′′
k) ≤ CdWα (x′0, x

′′
0).(4.42b)

As it is clear, e.g. from (4.24a), the expansion of unstable curves can
be arbitrarily large if the curve is cut by a grazing singularity. However,
as in the case of billiards (see [9, Exercise 4.50]), the divergence of the
expansion rate is integrable, as we show in the following lemma.

Lemma 4.20.

(a) For any L > 0, there exists a constant C∗ > 1 so that for any
unstable curve W with |W |E < L and any connected component
W ′ ⊂ FW , we have

|W ′|α ≤ C∗|W |1/4α(4.43)

(b) For any δ∗ > 0 and k > 0 there exists δ = δ(δ∗, k) ∈ (0, δ∗) so
that if W is an unstable curve with |W |α ≤ δ, W ′ is a connected
subcurve of FnW and n̂(W ) < k, then |W ′|α ≤ δ∗.

The corresponding estimates for stable manifolds hold true.

Proof. It suffices to prove this result with the α-metric replaced by the
auxiliary metric | · |∗ defined by (4.28). Assume first that w ≥ w∗ on
W , then by (4.29) and Lemma 4.8(a) we conclude that the expansion
along W can be at most 1+2κ′w/κw′ which is uniformly bounded from
above, hence |W ′|∗ ≤ C|W |∗.

Next, assume that there is a point on W so that w ≤ w∗. Let u
and u′ be the arclength parameters on W and W ′ respectively (with
respect to | · |∗-metric). Pick a large T and consider two subcases.

(i) τ ≤ T on W : in this case Lemma 4.8 gives a uniform lower bound
on (B−)′ and hence (4.29) implies that

∣∣du′
du

∣∣ ≤ ĉ
w′

. Let w̃′ denote the
minimal w′ on W ′ and ũ′ parametrize the point where the minimum is
achieved. Since |V| ≥ K it follows that

w′ ≥ w̃′ + c|u′ − ũ′|,
hence, we gather ∣∣∣∣du′du

∣∣∣∣ ≤ c̄

|u′ − ũ′|
.
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Integrating the above estimate we obtain |W ′|2∗ ≤ C|W |∗ as needed.
(ii) τ ≥ T somewhere on W . Then there is a (large) ν ∈ N such that

r+ τ(W ) ⊂ (ν, ν + 1), i.e. W ′ ⊂ D−ν . In this case Lemma 4.8(b) shows
that, on W ′, (B−)′ is of order 1/ν; thus repeating the argument from
the previous subcase we obtain

(4.44) |W ′|2∗ ≤ Cν|W |∗.
On the other hand, by Lemma 3.12(e) and Remark 3.13, since W ′ ⊂
D−ν , we gather

(4.45) |W ′|2∗ ≤
C̄2

ν
.

Multiplying (4.44) and (4.45) we obtain the result.
We now prove item (b). Notice that it suffices to prove the case

k = 1, since the general case follows by induction. let w∗ be sufficiently
large and consider two possibilities.

(I) If W ⊂ {w ≤ w∗}, then N̂(x) < N∗ = Cw∗, and thus n ≤ N∗:

then the conclusion follows from item (a) since |W ′|α ≤ C
4/3
∗ |W |1/4

N∗
α .

(II) On the other hand, if W ∩ {w > w∗} 6= ∅, by choosing w∗
sufficiently large and δ < 1 we can guarantee that (4.26) holds for all
points in W , from which our conclusion immediately follows. �

Remark 4.21. Inspecting the proof of Lemma 4.20, we can obtain the
slightly stronger result that ifW is unstable (resp. stable) andW ⊂ D+

R ,

(resp. W ⊂ D−R), then |W ′|α ≤ C#|W |1/2α .

Lemma 4.22.

(a) For any ν̄, there exists δ = δ(ν̄) > 0 so that for any u-curve
W ⊂ M with |W |α < δ, FW has at most 3 connected compo-
nents that are not contained in

⋃
ν>ν̄ D−ν .

(b) There exists δ > 0 and w∗ > 0 so that if |W |α < δ and W ⊂
{w ≥ w∗}, then W intersects at most two E∗n’s.

(c) For any ν̄ sufficiently large, there exists δ = δ(ν̄) > 0 and

K > 0 so that for any u-curve W ⊂ M̂ with |W |α < δ, FW
has at most K connected components that are not contained in⋃
ν>ν̄ D−ν .

Proof. We begin with the proof of item (a). Observe that by Proposi-
tion 4.15(a), it suffices to prove the statement for the Euclidean metric
| · |E. Let W ′ = W \ D+

R . By Lemma 3.6(a2) we conclude that W ′ is
connected. Since D+

R ∩ S+ = ∅, we conclude that F(W ∩D+
R) ⊂ D−R is

also connected. Therefore it can contribute to at most one connected
component, which is not in

⋃
ν>ν̄ D−ν . Hence, it suffices to prove that
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there exists δ > 0 so that if |W ′|E < δ, W ′ ∩ D+
R = ∅, then FW ′ has

at most 2 connected components that are not contained in
⋃
ν>ν̄ D−ν .

This is immediate if ν̄ < 2. Otherwise there would be a sequence of
curves W ′

n converging to a point which would intersect at least three
D+
ν , with ν ≤ ν̄. Hence it would intersect at least two S+

ν , with ν ≤ ν̄.
Since S+

ν are closed sets, we conclude that two curves S+
ν and S+

ν′ must
intersect, but this is impossible by Lemma 3.10(a).

In order to prove item (b), let us assume that W intersects at least
three consecutive E∗n’s: let us denote them by E∗n−1, E∗n and E∗n+1; in
particular it must be that W intersects both Sn and Sn+1. This implies
that Fn+1W will have a component W ′ that joins S0 to S−1, and thus
|W ′|α > c for some uniform c > 0 (see (4.17) ). However, (4.26)
guarantees that the expansion of Fn is bounded above by Λ∗. We
conclude that |W |α > c/Λ∗. Hence if |W |α < c/Λ, W can only intersect
2 of the E∗n’s.

We now proceed to the proof of (c); fix w∗ > 0 sufficiently large. If
W ∩ {w ≤ w∗} 6= ∅ and |W |α < 1, then Lemma 4.2 allows to conclude

that N̂(x) ≤ N∗ where N∗ = Cw∗. By part (a) there exists δ∗ so
that if |W |α < δ∗, then FW has at most 3 connected components
not contained in

⋃
ν≥ν̄ D−ν . Moreover by Lemma 4.20, we can find

δ = C#δ
4N∗
∗ so that any connected component of FnW , for 0 ≤ n ≤ N∗

is not larger than δ∗. Finally, observe that if ν̄ is sufficiently large,

then D−ν ⊂ M̂ for any ν ≥ ν̄. We can conclude by induction that

F̂W has at most 3N∗ components not contained in
⋃
ν≥ν̄ D−ν , provided

that |W |α < δ. Assume, on the other hand that W ⊂ {w ≥ w∗}.
According to Theorem 4.6, if |W |E(τ,I) < 1/2, then W lies in at most 2

fundamental domains Dn, and therefore F̂W has at most 2 connected
components. By (4.17), there exists δ > 0 so that if |W |α < δ, then
|W |E(τ,I) < 1/2. We conclude that item (b) holds even for large w. �

Finally, we conclude this section with a useful result about singular-
ities (this is the analog of [9, Lemma 4.55] for our system.)

Lemma 4.23. The sets S+∞ and S−∞ are dense in M.

Proof. We prove the lemma for S+∞ (the statement for S−∞ follows
by the properties of the involution).

Assume by contradiction that M \ S+∞ contains an open ball B.

Let x ∈ B and N = N̂(x). Then B′ = FNB ⊂ M̂ and by invariance

of M\ S+∞ we gather that B′ ⊂ M̂ \ S+∞ ⊂ M̂ \ Ŝ+∞.
We conclude that there exists an unstable curve W ⊂ B′ of positive

length so that F̂n|W is smooth for every n > 0. By Proposition 4.15(c)
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the length of the unstable curve F̂nW would grow arbitrarily large.

Since unstable curves are decreasing, by definition of M̂ and of the α-
metric this means that for any w∗, there exists n∗ so that F̂n∗W ∩{w >
w∗} 6= ∅. But by the observation below Theorem 4.6(a) this means

(choosing w∗ sufficiently large) that F̂n∗W will intersect nontrivially at

least two fundamental domains Dk, which in turn means that F̂n∗+1|W
is discontinuous, which contradicts our assumptions. �

5. Distortion estimates

The previous sections dealt with C1 estimates for the dynamics of
Fermi–Ulam Models. However, it is well known that, in order to ob-
tain good statistical properties of hyperbolic maps, one needs a higher
regularity than C1 for the purpose of controlling e.g. distortion. The
necessary results about higher derivatives of the iterates of F̂ are pre-
sented in this section.

5.1. Homogeneity strips. In order to control distortion of u-curves,
we introduce the so-called homogeneity strips Hk ⊂ M. Fix k0 ∈ N
sufficiently large, to be specified later, and define

H0 = {(r, w) ∈M s.t. w > k−2
0 }.

For k ≥ k0 define

Hk = {(r, w) ∈M s.t. w ∈ ((k + 1)−2, k−2]}.

By Proposition 4.15(b), we gather that if Fx ∈ Hk, the expansion rate
along unstable vectors at x for the α-metric is bounded below by C#k

2.
Moreover, by Lemma 4.22, we can conclude that there exists ν∗ > 0 so
that D±ν ∩H0 = ∅ for any ν > ν∗.

As it is customary in the theory of billiards, we need to treat the
boundaries of Hk as auxiliary (or secondary) singularities. For k ≥ k0,

denote by Sk = (0, 1) × {k−2} and put S =
⋃
k≥k0

Sk. Then we let

S0
H = S0 ∪ S and for any n > 0 we let:

SnH = Sn ∪
n⋃

m=0

F−m(S \ S−m), S−nH = S−n ∪
n⋃

m=0

Fm(S \ Sm).(5.1)

Remark 5.1. Observe that FS (resp. F−1S) is a countable union of
stable (resp. unstable) curves that accumulate on the singular curves
S−1 \S0 (resp. S1 \S0). Each curve also terminates on S−1 (resp. S1).
In particular each SnH is a closed set.
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As in Section 4, we now extend these definitions to the induced map.
First, define

S̃+
H = S0

H ∩
⋃
k≥0

(Sk+1
H ∩ Ek),

then let Ŝ+
H = (S̃+

H ∩M̂)∪∂M̂. By a similar construction we can define

Ŝ−H . then for any n > 0 we let:

Ŝn+1
H = ŜnH ∪ F̂−1(ŜnH \ Ŝ−) Ŝ−n−1

H = Ŝ−nH ∪ F̂(Ŝ−nH \ Ŝ
+).(5.2)

The auxiliary singularities will further cut any set into components,
which we call homogeneous components (or H-components) An unstable
(or stable) curve W is said to be weakly homogeneous if W belongs to
only one strip Hk.

5.2. Unstable curves. In this section we study regularity properties
of unstable curves. By (2.6), it suffices to establish the regularity of
the p-slope B−. In order to do so, we find convenient to introduce
the following notion: an unstable curve W is said to be K-admissible
if B− is K-Lipschitz (with respect to the α-metric) on W \ D+

R and
(B−)−1 is K-Lipschitz (with respect to the α-metric) on19 W ∩ D+

R .
Using the involution, we can analogously define the class of stable K-
admissible curves. In this section we focus on properties of unstable
curves. Corresponding statements for stable curves follow using the
involution. Later (in Section 7), we will use the properties of stable
curves.

Proposition 5.2. For each K > 0 there exists K̄ > 0 such that the
following holds. Let W be a weakly homogeneous mature unstable curve
that is K-admissible. Then, for any n > 0, any H-component of FnW
is K̄-admissible.

Proof. Recall that for any x ∈ W \ Sn we denote with B−n (x) the value
of B− of the curve FnW at the point Fnx. In this proof we drop the
superscript “−” in B−n in order to simplify the notation. We have,
using (2.4), that Bn = G(τn−1,Bn−1,Rn−1) where

G(τ,B,R) =
B +R

1 + τ(B +R)
.

19 In case that either W \ D+
R or W ∩ D+

R is empty, we assume the Lipschitz
condition to be trivially satisfied.
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A direct computation gives

G(τ,B′,R)−G(τ,B′′,R) =
(B′ − B′′)

(1 + τ(B′ +R))(1 + τ(B′′ +R))
,(5.3a)

G(τ,B,R′)−G(τ,B,R′′) =
(R′ −R′′)

(1 + τ(B +R′))(1 + τ(B +R′′))
,(5.3b)

G(τ ′,B,R)−G(τ ′′,B,R) =
(B +R)2(τ ′ − τ ′′)

(1 + τ ′(B +R))(1 + τ ′′(B +R))
.(5.3c)

Let Wn be a H-component of FnW and for 0 ≤ k ≤ n let Wk =
Fk−nWn; let x′, x′′ ∈ W0 and for 0 ≤ k ≤ n let x′k = Fkx′ and
x′′k = Fkx′′. Observe that by construction x′k and x′′k belong to the
same homogeneity strip. We can further assume W0 to be sufficiently
short so that dE(x′k, x

′′
k) ≤ 1 for any 0 ≤ k ≤ n (otherwise we can

partition W0 into smaller subcurves which satisfy this requirement).
By construction, for any 0 ≤ k < n, the curve Wk is contained in a
single cell D+

ν . In particular each Wk is either contained or disjoint
from D+

R .
Now, for 0 ≤ k < n we are going to define δk ≥ 0 as follows.

Fix a large number w∗ > 0; if Wk ⊂ D+
R we let δk = 0. Otherwise,

Wk ∩ D+
R = ∅ and we let δk = `∗/max{w∗, w′k}. Observe that, if w∗ is

sufficiently large, (3.3) allows to conclude that δk is a lower bound on
τ(x) among all points y so that dE(y,Wk) ≤ 1. Finally, let

∆′k = 1 + δk

(
B′k +

K
w′k

)
, ∆′′k = 1 + δk

(
B′′k +

K
w′′k

)
.

Later (in Section 5.4) we will consider the case where x′k and x′′k do not
necessarily belong to a common unstable curve. In this case we define
δk based on the properties of the curve containing x′k. We thus state
the next lemma under more general assumptions than needed in the
current setting.

Lemma 5.3. Let W ′ and W ′′ be two mature unstable curves; let x′ ∈
W ′ and x′′ ∈ W ′′; let n > 0 be so that for any 0 ≤ k ≤ n the points x′k
and x′′k belong to the same cell D−ν , to the same homogeneity strip and
dE(x′k, x

′′
k) < 1. Then the following estimates hold for 1 ≤ k ≤ n:

(a) If x′k 6∈ D−R , then

|B′k − B′′k | ≤
|B′k−1 − B′′k−1|

∆′k−1∆′′k−1

+ C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.
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(b) If x′k ∈ D−R , then∣∣∣∣ 1

B′k
− 1

B′′k

∣∣∣∣ ≤ C
[
|B′k−1 − B′′k−1|+ dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.(5.4)

Moreover, if additionally k 6= n:∣∣B′k+1 − B′′k+1

∣∣ ≤ |B′k−1 − B′′k−1|
∆′k∆

′′
k

+

+ C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k) + dE(x′k+1, x

′′
k+1)

]
.

Before giving the proof of the above lemma, let us see how it yields
Proposition 5.2. In our case W ′ = W ′′ = W0. Let us first assume that
W0 ∩ D−R = ∅. We consider two possibilities: either Wn ∩ D−R = ∅ or
Wn ⊂ D−R .

In the first case, iterating the estimates of parts (a) and (b) of the
lemma we get, since x′n 6∈ D−R :

|B′n − B′′n| ≤
|B′0 − B′′0 |∏n−1
j=0

[
∆′j∆

′′
j

] + C
n∑
j=0

dE(x′j, x
′′
j )(5.5)

≤ |B′0 − B′′0 |+ C
n∑
j=0

dE(x′j, x
′′
j ).

≤ Kdα(x′0, x
′′
0) + C

n∑
j=0

dE(x′j, x
′′
j ).

≤ C(K + 1)dα(x′n, x
′′
n).

where in the last passage we invoked Lemma 4.17.
In the second case, we iterate the estimates of parts (a) and (b) until

step n− 1 and use (5.4) at the last step, which gives:∣∣∣∣ 1

B′k
− 1

B′′k

∣∣∣∣ ≤ C
|B′0 − B′′0 |∏n−1
j=0

[
∆′j∆

′′
j

] + C

n∑
j=0

dE(x′j, x
′′
j )

from which we conclude as above.
We now consider the case W0 ⊂ D−R . By Lemma 5.3(a)

|B′1 − B′′1 | ≤
∣∣∣∣ 1

B′0
− 1

B′′0

∣∣∣∣ B′0B′′0∆′0∆′′0
+ C

[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.

Notice that

B′0B′′0
∆′0∆′′0

≤ B′0B′′0
(1 + δ0B′0)(1 + δ0B′′0)

≤ 1

δ2
0

.
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Since W0 ⊂ D−R , and D−R ∩D
+
R = {xC}, we conclude that W0 ∩D+

R = ∅
and so δ0 > 0. In particular we have:

|B′1 − B′′1 | ≤ +C

[∣∣∣∣ 1

B′0
− 1

B′′0

∣∣∣∣+ dE(x′k−1, x
′′
k−1) + dE(x′k, x

′′
k)

]
.

We then argue as in the other case (for each of the two subcases in-
volving Wn), but starting from k = 1 and we obtain the result. �

It remains to establish Lemma 5.3.

Proof of Lemma 5.3. (a) We have

B′k − B′′k =
[
G(τ ′k−1,B′k−1,R′k−1)−G(τ ′k−1,B′′k−1,R′k−1)

]
+
[
G(τ ′k−1,B′′k−1,R′k−1)−G(τ ′k−1,B′′k−1,R′′k−1)

]
+
[
G(τ ′k−1,B′′k−1,R′′k−1)−G(τ ′′k−1,B′′k−1,R′′k−1)

]
= I + II + III.

We now estimate each of these three terms separately using (5.3).

|I| =
|B′k−1 − B′′k−1|

(1 + τ ′k−1(B′k−1 +R′k−1))(1 + τ ′k−1(B′′k−1 +R′k−1))
≤
|B′k−1 − B′′k−1|

∆′k−1∆′′k−1

.

Let us now consider the second term. We have

|II| =
|R′k−1 −R′′k−1|

(1 + τ ′k−1(B′′k−1 +R′k−1))(1 + τ ′k−1(B′′k−1 +R′′k−1))

≤
|R′k−1 −R′′k−1|

(1 + τ ′k−1R′k−1)(1 + τ ′k−1R′′k−1)
.

The numerator equals

2

∣∣∣∣κ′k−1w
′′
k−1 − κ′′k−1w

′
k−1

w′k−1w
′′
k−1

∣∣∣∣ ≤ 2
κ′k−1|w′k−1 − w′′k−1|

w′k−1w
′′
k−1

+ 2
|κ′k−1 − κ′′k−1|

w′′k−1

.

We split the discussion in two cases:

(A) If |w′k−1| ≤ 2 then we obtain

|R′k−1 −R′′k−1| ≤ C
|r′k−1 − r′′k−1|+ |w′k−1 − w′′k−1|

w′k−1w
′′
k−1

.

Since δk−1 > δ̄ > 0 (because w′k−1 < 2 < w∗)

|II| ≤
CdE(x′k−1, x

′′
k−1)(

1 +
2δk−1κ

′
k−1

w′k−1

)(
1 +

2δk−1κ
′′
k−1

w′′k−1

)
w′k−1w

′′
k−1

≤
C̄dE(x′k−1, x

′′
k−1)

δ2
k−1κ

′
k−1κ

′′
k−1

≤ ¯̄CdE(x′k−1, x
′′
k−1).
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(B) Otherwise, if w′k−1 > 2 then we bound the numerator from
above by C̄dE(x′k−1, x

′′
k−1) and the denominator from below by

1, which also yields |II| ≤ ¯̄CdE(x′k−1, x
′′
k−1).

To estimate (III), consider two cases.
(A) If w′k−1 ≤ w∗ then

|III| ≤
(B′′k−1 +R′′k−1)2|τ ′k−1 − τ ′′k−1|
(1 + δk−1(B′′k−1 +R′′k−1))2

≤
|τ ′′k−1 − τ ′k−1|

δ2
k−1

≤
|r′k−1 − r′′k−1|+ |r′k − r′′k |

δ̄2

where in the last step we used the fact that, since x′k and x′′k belong to
the same cell D−ν , we have |τ ′k−1 − τ ′′k−1| ≤ |(r′k − r′k−1) − (r′′k − r′′k−1)|
and the fact that if w′k−1 < w∗, then δk−1 > δ̄.

(B) If w′k−1 > w∗, then Corollary 4.11(b) allows us to estimate the
numerator of (5.3c) from above by C[|r′k−1 − r′′k−1|+ |r′k − r′′k |] and the
denominator by 1, obtaining:

|III| ≤ C[|r′k−1 − r′′k−1|+ |r′k − r′′k |].

Hence, either in case (A) or case (B) we conclude that

|III| ≤ CdE(x′k−1, x
′′
k−1) + dE(x′n, x

′′
n),

which completes the proof of part (a).
In order to prove part (b), we begin by estimating |B′k−B′′k | in terms

of |B′k−1 − B′′k−1|.
If x′k−1 ∈ H0 (and thus x′′k−1 ∈ H0 by assumption) then we have

(5.6) |B′k − B′′k | ≤ |B′k−1 − B′′k−1|+ C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]

because we can bound from below the denominators of I, II and III by
1, and the numerators of II and III are

O
(
dE(x′k−1, x

′′
k−1)

)
and O

(
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
)

respectively due to a lower bound on w′k−1 and w′′k−1 and the upper
bound on B′′k−1 given by Corollary 4.11 (since xk ∈ D−R , we have xk−1 6∈
D−R). Combining (5.6) with the already established part (a) for x′k+1 6∈
D−R we obtain the estimates of part (b) in case x′k−1 ∈ H0 (note that we
have uniform lower bounds on B′k and B′′k , so that also (5.4) follows).

Next, we consider the case x′k−1, x
′′
k−1 ∈ Hj for some j > 0. Then

C−1w′k−1 ≤ w′′k−1 ≤ Cw′k−1. Observe that our assumptions give a
uniform upper bound on w′k−1 and uniform upper bound on B′k−1. In
fact, since x′k ∈ D−R , it follows that x′k−1 ∈ D+

R . Thus F−1x′k−1 6∈ D+
R

(this follows from Remark 3.7, because xC 6∈ Hj for any j). Hence the



DISPERSING FERMI–ULAM MODELS 47

required upper bound on B′k−1 follows from Lemma 4.8(b), since we
assume W to be mature.

Since B′k−1 is uniformly bounded, assuming k0 in the definition of
the homogeneity strips to be sufficiently large, we have the following
estimates

c
R′k−1

1 + τ ′k−1R′k−1

≤ B′k ≤ c−1 R′k−1

1 + τ ′k−1R′k−1

,
c

wk−1

≤ R′k−1 ≤
c−1

wk−1

.

Hence

(5.7)
c̄

wk−1 + τk−1

≤ B′k ≤
c̄−1

wk−1 + τk−1

.

Without loss of generality we may assume that τ ′k−1 ≥ τ ′′k−1. Then (5.7)
shows that

(5.8) B′k ≤ CB′′k .

We now estimate I, II and III as follows.

|I| ≤ |B′k−1 − B′′k−1|,

|II| ≤
CdE(x′k−1, x

′′
k−1)(w′k−1)−2(

1 +
cτ ′k
w′k−1

)2 ≤ C(B′k)2dE(x′k−1, x
′′
k−1),

|III| ≤
C
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]

(w′k−1w
′′
k−1)−1(

1 +
cτ ′k−1

w′k−1

)(
1 +

cτ ′′k−1

w′′k−1

)
≤ CB′kB′′k

[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
.

Here the second inequality in the estimates of II and III follow from (5.7).
Combining these estimates with (5.8) we conclude that20

|B′k − B′′k | ≤ |B′k−1 − B′′k−1|+ CB′kB′′k
[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]
,

(5.9)

which yields (5.4) since we have a uniform lower bound on B−k in the
recollision region (see Lemma 4.8). Combining the above bound with

20 Observe that (5.9) holds trivially also if x′k−1 ∈ H0, by (5.6) and the fact
that we have a uniform lower bound on B′k, as the flight time τ ′k−1 is bounded (see

Lemma 4.8)
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the bound at step k + 1 already established in part (a), we conclude

|B′k+1 − B′′k+1| ≤
|B′k−1 − B′′k−1|

∆′k∆
′′
k

+

+ C
B′kB′′k

(1 + δkB′k)(1 + δkB′′k)

[
dE(x′k−1, x

′′
k−1) + dE(x′k, x

′′
k)
]

+ C
[
dE(x′k, x

′′
k) + dE(x′k+1, x

′′
k+1)

]
.

Since

B′k
1 + δkB′k

≤ 1

δk
,
B′′k

1 + δkB′′k
≤ 1

δk

part (b) follows, because in the region under consideration, 1/δk admits
a uniform in k upper bound. �

The proof of Lemma 5.3 provides some additional useful information
which we record for a future use.

Lemma 5.4.

(a) For any δ̄ > 0 there is a constant K(δ̄) such that if Wn is an
H-component of FnW contained in D−R and if τn−1 ≥ δ̄ on Wn

then B−n is K(δ̄) Lipschitz on Wn.
(b) There exist constants T and K2 such that if τn−1 ≥ T on Wn

then B−n |Wn is K2/T
2 Lipschitz.

Proof. Part (a) holds since the assumption that x′k 6∈ D−R is only used
in Proposition 5.2 to obtain a uniform lower bound on the flight time,
and such bound is now explicitly assumed .

Moreover, the assumptions in part (b) allow us to estimate δ2 in the
denominators of I, II, and III by T 2 obtaining

|B′n − B′′n| ≤ C
|B′n−1 − B′′n−1|+ dE(x′n−1, x

′′
n−1) + dE(x′n, x

′′
n)

T 2

≤ C̄
|B′n−1 − B′′n−1|+ dE(x′n, x

′′
n)

T 2
.

It remains to note that we have a uniform Lipschitz bound on B−n−1.
In fact, if Wn−1 6⊂ D−R then this bound follows from Proposition 5.2.
If Wn−1 ⊂ D−R then the bound follows from the already established
part (a). Indeed, the fact that τn ≥ T implies (provided that T is
sufficiently large) that Wn−1 is close to xC giving the necessary lower
bound on τn−1. �

Corollary 5.5. For any L > 0 there exists a constant K̂ > 0 such that
if W ⊂M\S−∞ is an unstable curve such that |W |E < L and F−nW
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is unstable for each n, then W is K̂-admissible. In particular, unstable
manifolds are K̂-admissible.

Proof. Let (nk)
∞
k=0 be a strictly increasing sequence of non-negative

numbers such that F−nkW 6⊂ D−R . We will now show that there exists
K > 0 so that F−n0W is B−n0 is K-Lipschitz. This implies that F−n0W
is K-admissible, and by Proposition 5.2 we could conclude that W is
K̂-admissible, with K̂ = K̄(K).

For any x′, x′′ ∈ F−n0W , arguing as in (5.5) we obtain that:∣∣B′n0
− B′′n0

∣∣ ≤ ∣∣B′−nk − B′′−nk∣∣∏−n0−1
j=−nk

[
∆′j∆

′′
j

] + C

−n0∑
j=−nk

dE(x′j, x
′′
j ).(5.10)

By Lemma 4.17, the second term of the right hand side is smaller
than Cdα(x′−n0

, x′′−n0
). On the other hand, the first term tends to 0 as

k →∞, since the numerator is bounded above by Corollary 4.11 while
the denominator tends to infinity due to Proposition 4.15. �

We now fix L = 1 and declare an unstable curve W admissible if
|W |E < 1 and if it is 2K̂-admissible, where K̂ is the one given in
Corollary 5.5 for L = 1.

Remark 5.6. As a matter of fact, it suffices to assume that W ⊂ M \
S−∞ is an unstable curve to conclude that there exists L > 0 so that
|W |E < L and F−nW is unstable for each n. We will explain this
in Section 7.2. For the moment it is convenient to fix ideas and set
(arbitrarily) L = 1.

5.3. Unstable Jacobian. Given a mature unstable curve W , n ∈ Z
and x ∈ W \ Sn, we denote with

JWFn(x) =
|DxFn(dx)|α
|dx|α

the Jacobian of the restriction of the map Fn to W at the point x in
the α-metric (here dx denotes a nonzero tangent vector to W at x).

Lemma 5.7. Given L > 0 there exists K̄ > 0 so that for any mature
admissible unstable curve W ⊂M\S− so that FW belongs to a single
H-component and |W |α ≤ L then lnJWF(x) is a Hölder function of
constant K̄ and exponent 1/12 with respect to the α-metric on W .

Moreover, let W ′ be a subcurve of W which is mapped by F l to a
H-component of F lW . If l ≤ N̂(x) for any x ∈ W ′ then lnJWF l(x) is
a Hölder function on W ′ of constant K̄ and exponent 1/12 with respect
to the α-metric on W ′.
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Proof. In this proof we again drop the superscript − from B for the
ease of notation. In view of (4.28) and (4.29), we have

JWF(x) = exp
(
α0(1D+

R
(x)− 1D−R

(x))
)
H(x,Fx),

where

H(x, x̄) =
(B̄w̄ + 2κ̄)(1 + α1w̄)

B̄w̄(1 + α1w)
.(5.11)

Observe that the exponential term multiplying H is actually constant
on W , because both W and W̄ = FW are contained in a single H-
component and thus W is either contained in or disjoint from D−R or
D+

R .
We claim that

lnH = ln(B̄w̄ + 2κ̄) + ln(1 + α1w̄)− ln B̄ − ln w̄ − ln(1 + α1w)

(5.12)

is uniformly Hölder on W ×W .
Suppose first that W ∩ D−R = ∅. Let (x′, x̄′) and (x′′, x̄′′) be two

points on W ×W . Note that if ζ ≥ a > 0, then ζ 7→ ln(ζ) is Lipschitz
with constant a−1. Therefore ln(1+α1w) (and similarly ln(1+α1w̄)) is
uniformly Lipschitz on W (resp. , on W ) with respect to the Euclidean
metric (and thus to the α-metric). Observe that by the lower bound
for large energies in Corollary 4.11 (and since κ̄ ≥ K) we have that
B̄w̄+2κ̄ ≥ C(w̄+1). Hence the upper bound of Corollary 4.11 and the
fact that x̄′ 6∈ D−R give

| ln(B̄′′w̄′′ + 2κ̄′′)− ln(B̄′w̄′ + 2κ̄′)|

≤ C

w̄′ + 1

∣∣B̄′′w̄′′ − B̄′w̄′∣∣+ |κ̄′ − κ̄′′|

≤ C|B̄′′ − B̄′|+ Cdα(x̄′, x̄′′),

from which we obtain a uniform Lipschitz estimate on ln(B̄w̄ + 2κ̄),
using Proposition 5.2. Next, if W ⊂ H0, then w̄ > C and thus ln w̄ is
uniformly Lipschitz. On the other hand, if W ⊂ Hk for some k > 0,

then k3|w̄′−w̄′′| ≤ C, which implies k2|w̄′−w̄′′| ≤ C|w̄′ − w̄′′|1/3. Since
w̄ > (k + 1)−2, we obtain

| ln w̄′ − ln w̄′′| ≤ Ck2|w̄′ − w̄′′| ≤ C̄|w̄′ − w̄′′|1/3.

Finally ∣∣ln B̄′ − ln B̄′′
∣∣ =

∣∣∣∣ln B̄′B̄′′
∣∣∣∣ ≤ |B̄′ − B̄′′|B̄′′

.
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Let T be the constant from Lemma 5.4(b). If the flight time is less than

T then we can estimate the numerator by 2K̂dα(x̄′, x̄′′) due to Propo-
sition 5.2 while the denominator is uniformly bounded from below due
to Lemma 4.8 (for small w′) and Corollary 4.11 (for large w′). On the
other hand, if the flight time is greater than T then the numerator is
less than K2dα(x̄′, x̄′′)/T 2 due to Lemma 5.4(b) while the denominator
is of order T−1 by Lemma 4.8.

This completes then proof of the fact that lnH is uniformly Hölder
on W ×W in case W ∩ D−R = ∅. In fact, our analysis shows that all
terms in (5.12) are Lipschitz except for ln w̄ which may be 1/3-Hölder.

The analysis in case W ⊂ D−R is similar except that we rewrite

B̄w̄ + 2κ̄

B̄
= w̄ + 2

κ̄

B̄
.

Then Proposition 5.2 implies that the above expression is Lipschitz
with respect to the α-metric. Lemma 4.12 yields that it is uniformly
bounded from below, which implies that ln(w̄+ 2κ̄/B̄) is Lipschitz and
therefore that lnH is 1/3-Hölder also in case W ⊂ D−R .

To prove the Hölder continuity of lnJWF it remains to note that,
in view of Lemma 4.20, the map F|W is uniformly 1/4–Hölder with
respect to the α-metric.

We now proceed to the proof of the second statement. First note that
if w is bounded, then the Hölder continuity of lnJWF l follows from
the Hölder continuity of lnJWF since N̂(x) is uniformly bounded.

In case w is large, that is w ≥ w∗, then denote with xn = Fnx and
observe that:

JWF l(x) =
l∏

j=1

(
1 + αwj

1 + αwj−1

)(
2κj + Bjwj
Bjwj

)

=

(
1 + αwl
1 + αw0

) l∏
j=1

(
2κj + Bjwj
Bjwj

)

Once again, ln(1+α1w0)− ln(1+αwl) is Lipschitz on W ′×F lW ′. Next
we show that, in the high energy regime, F l is uniformly Lipschitz.
Indeed, at each step j < l, JWF(F jx) = 1 + O(w−1

0 ) due to (4.29)
and Corollary 4.11. On the other hand, by (4.10), l is at most of order
w, giving an uniform upper bound on JWF l(x). It remains to handle
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the product. Let x′j and x′′j be two orbits. Then∣∣∣∣∣
l∑

j=1

ln

(
2κ′j + B′jw′j
B′jw′j

)
− ln

(
2κ′′j + B′′jw′′j
B′′jw′′j

)∣∣∣∣∣
=

∣∣∣∣∣
l∑

j=1

ln

(
1 + 2

κ′jB′′jw′′j − κ′jB′′jw′′j
B′jw′j(2κ′′j + B′′jw′′j )

)∣∣∣∣∣
≤ C1

l∑
j=1

|κ′jB′′jw′′j − κ′jB′′jw′′j |
w′jw

′′
j

≤ C2

l∑
j=1

dα(x′j, x
′′
j )

w′j

≤ C3N̂(x′0)

w′
dα(x′l, x

′′
l ) ≤ C4dα(x′, x′′). �

Let n > 0, W ⊂ M be a mature unstable curve with the property
that F−nW is a mature unstable curve and let x̃ ∈ W be a reference
point on W . Then we can define a density ρn on W as follows:

ρn(x) =
JWF−n(x)

JWF−n(x̃)
=

n∏
j=1

JWF(F−jx)

JWF(F−jx̃)
.

Lemma 5.8. (a) Given L > 0, there is a constant K̃ > 0 such that the
following holds. Let V be a mature admissible unstable curve so that
W = FnV belongs to only one H-component and |W |α < L. Then

‖ ln ρn(x)‖C1/12(W ) ≤ K̃.

(b) Let W be an unstable manifold (that is, F−nW is an unstable
curve for all n) with |W |α < L. Then ρn converges when n→∞ along
a sequence of times such that F−nW 6⊂ D−R to a limiting density ρ∞and
ln ρ∞ is Hölder continuous.

Remark 5.9. In this paper we will only use part (a) of the above lemma.
We decided to include part (b) as well since the proofs of both items are
similar and part (b) may be useful for studying statistical properties
of Fermi–Ulam Models (cf. [9, Section 7]).

Remark 5.10. In Remark 5.6 we mentioned that the Euclidean length of
unstable manifolds is uniformly bounded. Such a bound is unavailable
for the α-length, therefore we will not be able to drop the bounded
α-length assumption in our discussion.

Proof. The statement would easily follow from Lemma 5.7 if F were
uniformly hyperbolic. Since this is not the case, we need to follow a
strategy similar to the argument presented in the proof of Lemma 4.17.
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we partition the interval [1, · · · , n] into blocks with good hyperbolicity
properties.

First of all, by Lemma 4.17 there exists C > 1 so that for any
0 ≤ m ≤ n, |F−mW |α < CL. Moreover, since F−mW ∩ Sm = ∅, we

already observed that the function x 7→ min{m, N̂(x)} is constant on

F−mW . Let n0 be the constant value of min{n, N̂(x)} on V , n1 be

the constant value of min{n, N̂1(x)} − n0 and so on, until we obtain
n0, · · · , np > 0 so that n0 + · · · + np = n and for any 0 < l < p,

n0 + n1 + · · ·+ nl = N̂l(x) for any x ∈ V . We can thus rewrite:

ρn(x) =

p−1∏
j=0

JWFnj(F−n+n0+···+nj−1x)

JWFnj(F−n+n0+···+nj−1x̃)

Then we can write, for any x′, x′′ ∈ W :

|ln ρn(x′′)− ln ρn(x′)|

=

∣∣∣∣∣
p−1∑
j=0

lnJWFnj(F−n+n0+···+nj−1x′′)− lnJWFnj(F−n+n0+···+nj−1x′)

∣∣∣∣∣
Then Lemma 5.7 implies:

|ln ρn(x′′)− ln ρn(x′)| ≤ C#

p−1∑
j=0

dα(F−n+n0+···+nj−1x′,F−n+n0+···+nj−1x′′)1/12

≤ C#dα(x′, x′′)1/12+

+ C#

p−2∑
j=0

dα(F̂−jF−np−1x′, F̂−jF−np−1x′′)1/12+

+ C#dα(F−nx′,F−nx′′)1/12.

Proposition 4.15 and Lemma 4.17 conclude the proof of part (a).
To prove part (b) consider two time moments n1 < n2 such that

F−n2W 6⊂ D−R and F−n1|W = F̂−l1F−n∗ with F−n∗W ⊂ M̂. Then:

|ln ρn2(x)− ln ρn1(x)| =
∣∣∣ln ρn2−n1(F̂−n1x)

∣∣∣
=
∣∣∣ln ρn2−n1(F̂−n1x)− ln ρn2−n1(F̂−n1x̃)

∣∣∣
≤ K̃dα(F̂−n1x, F̂−n1x̃)1/12 ≤ Cθl1(dα(x, x̃))1/12,

where the first inequality relies on Corollary 5.5, the already established
part (a) and the second inequality relies on Proposition 4.15(c). �

The next bound immediately follows from Lemma 5.8.
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Corollary 5.11 (Distortion bounds). Let L > 0; there exists CD > 0 so
that the following holds. Let V be a mature unstable admissible curve,
Wn be an H-component of FnV so that |Wn|α < L and Vn = F−nWn.
Then, for any measurable set E ⊂M:

e−CD|Wn|1/12
α

LebWn(E)

LebWn(Wn)
≤ LebVn(F−nE)

LebVn(Vn)
≤ eCD|Wn|1/12

α
LebWn(E)

LebWn(Wn)
,

where LebV denotes Lebesgue measure on the curve V with respect to
the α-metric.

5.4. Holonomy map. A C1-curve W is called a (homogeneous) stable
manifold if |FnW | → 0 as n→∞ and for each n, FnW is contained in
one homogeneity strip. (Homogeneous) unstable manifolds are defined
similarly, with Fn replaced by F−n. At this point we do not know
how often the points have stable and unstable manifolds, this issue will
be addressed in Section 7.2. Below we discuss how the expansion of
unstable curves changes when we move along stable manifolds. We
denote by W s(x) the maximal homogenuous stable manifold passing
through the point x. Let W1,W2 be two mature unstable curves. Let

(5.13) Ωj = {x ∈ Wj : W s(x) ∩W3−j 6= ∅}.

Define

(5.14) H : Ω1 → Ω2 so that W s(x) ∩W2 = {H(x)}.

Observe that H commutes with F (and thus with F̂). We assume that
W1 and W2 are close to each other so that dα(x,Hx) ≤ d for some
small d > 0. Define

J(x) =
∞∏
j=0

JF̂jW2
F̂(F̂ jHx)

JF̂jW1
F̂(F̂ jx)

.(5.15)

Lemma 5.12.

(a) The infinite product (5.15) converges. In fact there are con-
stants C > 0, θ < 1 such that for any n > 0∣∣∣∣∣J(x)−

n−1∏
l=0

JF̂jW2
F̂(F̂ lHx)

JF̂jW1
F̂(F̂ lx)

∣∣∣∣∣ ≤ Cθn.

(b) For any ε̄ > 0 there exists δ̄ > 0 such that if x′ ∈ W1, x
′′ =

Hx′ ∈ W2, d(x′, x′′) ≤ δ̄ and |(B−0 )′ − (B−0 )′′| ≤ δ̄ then∣∣∣∣∣
n−1∏
l=0

JF̂jW2
F̂(F̂ lx′′)

JF̂jW1
F̂(F̂ lx′)

− 1

∣∣∣∣∣ ≤ ε̄.
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Remark 5.13. In this paper we will not use part (b) of this lemma, but
the proof follows from similar arguments, and part (b) could be useful
in future developments.

Proof. Once again, in this proof we drop the superscript − from B for
the ease of notation.

For x′ ∈ W1 and l ≥ 0, let us denote x′l = F̂ lx′ = F N̂l(x′)x′ and let
x′′ = Hx′. With this notation we have

J(x′) =
∞∏
l=0

JF̂jW2
F̂(x′′l )

JF̂jW1
F̂(x′l)

.

Observe that since x′′ ∈ W s(x′), the points x′j and x′′j belong to the same

cell D− for any j ≥ 0. In particular x′j ∈ D−R if and only if x′′j ∈ D−R
(and likewise for D+

R) and N̂l(x
′′) = N̂l(x

′). Let ml = N̂l(x
′′) = N̂l(x

′).
Using (5.11) we can then write∣∣∣∣∣ln J − ln

n−1∏
l=0

JF̂jW2
F̂(x′′l )

JF̂jW1
F̂(x′l)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

j=mn

[
lnH(x′′j , x

′′
j+1)− lnH(x′j, x

′
j+1)

]∣∣∣∣∣ .
Inspecting the proof of Lemma 5.7 we obtain the following estimate∣∣∣∣∣ln J − ln

n−1∏
l=0

JF̂jW2
F̂(x′′l )

JF̂jW1
F̂(x′l)

∣∣∣∣∣ ≤ C
∞∑
l=n

dα(x′ml , x
′′
ml

)1/12 + C
∞∑
l=n

ml+1−1∑
j=ml

Ξj,

where we defined

Ξj =


|B′j − B′′j |

min{1,B′′j }
if x′j 6∈ D−R ,∣∣∣∣ 1

B′j
− 1

B′′j

∣∣∣∣ otherwise.

Accordingly, we need good bounds on Ξj. Such bounds will be obtained
by different arguments depending on whether x′j 6∈ D−R (case A) or

x′j ∈ D−R (case B).
Let us first consider case A. Observe that since x′j−1 and x′′j−1 lie

on the same stable manifold, they belong to the same cell D−ν , and
ν ∼ τ ′j−1 for large ν. Next, Lemma 4.8 and Corollary 4.11 tell us that
B′′j can be small only if ν (and, hence, τ ′′j−1) is large and in this case B′′j is

of order ν−1. Applying once more Lemma 4.8 we get |B′j −B′′j | < Cν−2

and thus

|B′j − B′′j |
B′′j

≤ Cν|B′j − B′′j | ≤ C|B′j − B′′j |1/2.
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Hence, regardless if Bj is small or not, it suffices to obtain good bounds
for |B′j − B′′j |.

Let ml ≤ j < ml+1 and let ̃ be a number close to m(l/2) such that
x′̃ 6∈ D−R . Set θ̄ = Λ−1 ∈ (0, 1). Since x′j 6∈ D−R , iterating the estimates
of parts (a) and (b) of Lemma 5.3, we get

∣∣B′j − B′′j ∣∣ ≤ ∣∣B′̃ − B′′̃ ∣∣∏j−1
k=̃ [∆′k∆

′′
k]

+ C

j−1∑
k=̃

dE(x′k, x
′′
k)

≤
∣∣B′̃ − B′′̃ ∣∣∏j−1
k=̃ [∆′k∆

′′
k]

+ Cdα(x′ml/2 , xml/2).(5.16)

≤
∣∣B′̃ − B′′̃ ∣∣∏j−1
k=̃ [∆′k∆

′′
k]

+ Cθ̄l/2dα(x′, x′′).(5.17)

where in the second inequality we have invoked Corollary 4.19 and in
the last inequality we used uniform contraction of stable manifolds by
F̂ with respect to the α-metric (which follows from Proposition 4.15(c).

Next, the proof of Proposition 4.15 shows that the denominator in
the first term of the right hand side of (5.17) is O(θ̄−l/2). On the other
hand by Corollary 4.11 (since x′̃ 6∈ D−R), we gather

|B′̃ − B′′̃ | = O(1).(5.18)

Accordingly |(Bj)′−(Bj)′′| = O(θ̄l/2). for ml ≤ j < ml+1. Plugging this
estimate into (5.16) and summing over l ≥ n, we conclude the proof of
part (a) in case A by choosing θ = θ̄1/24.

Next consider case B. By (5.4), which holds in D−R , we have∣∣∣∣ 1

B′j
− 1

B′′j

∣∣∣∣ ≤ C|B′j−1 − B′′j−1|+ Cdα(x′j−1, x
′′
j−1).

Since x′j−1 6∈ D−R we can apply the estimates of case A to control
B′j−1 − B′′j−1 to conclude the proof of part (a) in case B.

The proof of part (b) is similar except that, we replace (5.18) by a
better estimate for |B′̃ − B′′̃ |. Namely, if x′0 6∈ D−R , then (5.10) gives

|B′̃ − B′′̃ | ≤
|B′0 − B′′0 |∏̃−1
k=0 [∆′k∆

′′
k]

+ C

̃∑
l=0

dα(x′ml , x
′′
ml

) ≤ C̄δ̄.

If x′0 ∈ D−R we obtain a similar bound by invoking (5.10) up to j = 1.
Accordingly |B′j − B′′j | = O(θ̄l/2δ̄) for ml < j < ml+1. Plugging this

estimate into (5.16) and summing for l ≥ 0 we obtain part (b). �



DISPERSING FERMI–ULAM MODELS 57

6. Expansion estimate

In this section we prove an expansion estimate for unstable curves
which is used in the proof of the so-called Growth Lemma (see Lemma 7.2).
The section is organized as follows. In Section 6.1 we define the no-
tion of regularity at infinity, which appears in the statement of our
Main Theorem and will be used crucially in the proof of the expansion
estimate. In Section 6.2 we state the expansion estimate as Proposi-
tion 6.5. The proof of this proposition is divided in two lemmas, which
are proved in the final three subsections of this section.

6.1. Complexity at infinity. Recall that Theorem 4.6 states that
for large values of w, F̂ is well approximated by the map F̂∆ defined
by (4.11). In order to obtain results about the complexity of the map

F̂ near ∞, we thus proceed to study the complexity of the map F̂∆.
From now on, we will assume ∆ to be fixed given by (1.1).

Recall the definition of fundamental domains D̂n given in Section 4.2,
and define, for any k > 0

(6.1) D̂n0,n1,··· ,nk−1
=

k−1⋂
j=0

cl (F̂−j∆ D̂nj).

We say that a k-tuple (n0, n1, · · · , nk−1) is ∆-admissible if D̂n0,n1,··· ,nk−1
6=

∅ and if x ∈ D̂n0,n1,··· ,nk−1
we say that (n0, n1, · · · , nk−1) is a k-itinerary

of x. We stress the fact that the sets D̂n0,n1,··· ,nk−1
are not pairwise dis-

joint (their boundaries might overlap), hence some points might have

more than one itinerary. For x ∈ cl (D̂0) we define Kk(∆, x) to be the
number of possible k-itineraries of x that begin with n0 = 0.

Remark 6.1. Observe that Kk(∆, x) is in general larger than the max-
imum number of singularity lines of order k meeting at the point x (a
number usually referred to as complexity). In fact, for some exceptional
values of ∆ (e.g. ∆ = −1) we can find x so that Kk(∆, x) = 2k. On
the other hand, for any ∆, the number of singularity lines meeting at
any point is bounded above by 2k (see [17, Proof of Theorem 2] and
also [11]).

We define the k-virtual complexity of ∆ at infinity as

Kk(∆) = max
x∈cl (D̂0)

Kk(∆, x).

Remark 6.2. The number Kk(∆) is crucial in our analysis since it con-
trols the number of components in which an arbitrarily small curve can
be cut not just by F̂ but an arbitrarily small perturbation of F̂ . See
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Figure 5: both panes show a neighborhood of the point (1/2, 1/2). The
left and right pane show the singularity portrait (up to k = 5 iterates)

of F̂∆=−1 and F̂∆=−(1+ε) respectively. As ε → 0 the nearly parallel
lines shown in the right pane slide and coalesce at the center. Observe
that the complexity of the center in the left pane is 2k, the complexity
of any point in the right pane is bounded by 3, but any short unsta-
ble curve passing sufficiently near the center is cut by singularities in
an exponential (in k) number of curves provided that ε is sufficiently
small. The k-virtual complexity Kk(∆) indeed bounds the number of
such curves. On the other hand, since each point on the orbit of x
belongs to at most two fundamental domains, it follows that

(6.2) Kk(∆) ≤ 2k.

Figure 5. Comparison of virtual complexity and stan-
dard complexity

Definition 6.3. A Fermi–Ulam model is regular at infinity if

lim sup
k→∞

Kk(∆)

Λk
∆

= 0

where Λ∆ is the expansion of the limiting map F̂∆ defined by (4.22).
A model is superregular at infinity if there exists a constant C so

that for any k ∈ N we have Kk(∆) ≤ C.

Remark 6.4. We will show in Appendix A that for all except possibly
countably many ∆, the map F̂∆ is superregular at infinity. However,
the result of Appendix A does not make it easy to check that a given
value of ∆ is regular. On the other hand (6.2) shows that F̂∆ is regular
at infinity provided that Λ∆ > 2, that is, if |∆| > 1

2
(see (4.11)).

Recall that the involution defined in Section 2.1 conjugates F−1 to
the Poincare map of the time reversed Fermi–Ulam Model correspond-
ing to ¯̀(r) = `(1 − r). Note that the parameter ∆ defined by (1.1) is
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the same for ` and ¯̀. In particular, the Fermi–Ulam Model is regular
at infinity if and only if the reversed model is regular at infinity. We
conclude that all results of this section formulated for unstable curves
of F are valid also for stable curves of F (that are unstable curves of
F−1).

6.2. Expansion estimate. In order to properly formulate the main
result of this section we need some definitions. Let W be an unstable
curve; then FW is consists of (at most) countable union of connected
components. Any such component may in principle be further cut by
secondary singularities in an (at most) countable number of shorter
curves which we call H-components. The same can be said for the
induced map F̂ .

We denote by {Wi,n}i∈N (resp. {Ŵi,n}i∈N) the H-components of FnW
(resp. F̂nW ). Given an H-component Ŵi,n of F̂nW , we can uniquely

define N̂i,n > 0 so that

F̂n|F̂−nŴi,n
= F N̂i,n|F̂−nŴi,n

.

Finally, we denote by Λi,n (resp. Λ̂i,n) the minimum expansion, with

respect to the α-metric, of Fn (resp. F̂n) on F−nWi,n (resp. F̂−nŴi,n).

Given an unstable curve W ⊂ M (resp. W ⊂ M̂), and n > 0, we
define:

Ln(W ) =
∑
i

1

Λi,n

L̂n(W ) =
∑
i

1

Λ̂i,n

.

Then we let

Ln(δ) = sup
W :|W |α≤δ

Ln(W ) L̂n(δ) = sup
W :|W |α≤δ

L̂n(W )

Ln = lim inf
δ→0

Ln(δ) L̂n = lim inf
δ→0

L̂n(δ)

It follows from the definition that Ln (resp. L̂n) is a sub-multiplicative
sequence, i.e.

Ln+m ≤ LnLm L̂n+m ≤ L̂nL̂m.(6.3)

Proposition 6.5 (Expansion estimate). There exists C > 0 such that

L̂1 < C.(6.4)

Moreover, if the Fermi–Ulam model is regular at infinity then there
exists n̄ > 0 so that

L̂n̄ < 1,(6.5)

and there exists C ′ > 0 so that for any n > 0 we have L̂n < C ′.
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The rest of this section is devoted to the proof of Proposition 6.5.
We will follow the strategy described in [18]. Recall the definition of
the homogeneity strips Hk given in Section 5.1.

Definition 6.6. Let W be an unstable curve. An H-component Wi,n

(resp. Ŵi,n) of FnW (resp. F̂nW ) is said to be regular if for any 0 ≤ q <

n (resp. 0 ≤ q < N̂i,n) we have that F−qWi,n ⊂ H0 (resp. F−qŴi,n ⊂
H0) and nearly grazing otherwise.

Observe that the notion of regularity depends on the choice of the
constant k0 introduced in Section 5.1; in particular, if k0 increases, the
number of regular H-components also increases.

Lemma 6.7. Let W be a u-curve and N > 0. Then any connected
component of FNW (resp. F̂NW ) contains at most one regular H-
component.

Proof. Let us first prove the statement for connected components of
FNW. We give a proof by induction on N . The statement is true if
N = 1. Indeed, the intersection of any connected u-curve with H0

is necessarily connected, hence out of the H-components in which a
connected component of FW is cut by secondary singularities, at most
one can be regular.

Assume now by induction that the statement holds for N , and let
W̃ ′ be a connected component of FN+1W . Let W̃ be the connected
component of FNW which contains F−1W̃ ′. By inductive hypothesis,
either W̃ contains no regular H-component (and thus so does W̃ ′ and
the statement holds), or it contains only one regular H-component,
which we denote by W ∗ ⊂ W̃ . Then any regular H-component of W̃ ′

has to be contained in the connected u-curve FW ∗∩W̃ ′. Since at most
one of the H-components of this curve can be contained in H0 (and thus
can be regular), we conclude the proof for N + 1.

Finally, the statement for F̂NW follows from the statement for FNW .
Namely, suppose that for some N, F̂NW contains two regular H-
components. Denote their preimages by W ′ and W ′′. Then F̂NW ′ =
FN ′W ′ and F̂NW ′′ = FN ′′W ′′. Suppose without loss of generality
that N ′ ≤ N ′′ then FN ′W has two regular H-components giving the
contradiction. �

Definition 6.8. Given an unstable curve W and n > 0, we define the
regular n-complexity of W (resp. the induced regular n-complexity of

W ), denoted by Kreg
n (W ) (resp. K̂reg

n (W )) to be the number of regular

H-components of FnW (resp. F̂nW ). If n = 0 we set conventionally
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Kreg
0 (W ) = K̂reg

0 (W ) = 1. Finally, define

Kreg
n (δ) = sup

W :|W |α≤δ
Kreg
n (W ), K̂reg

n (δ) = sup
W :|W |α≤δ

K̂reg
n (W );

Kreg
n = lim inf

δ→0
Kreg
n (δ), K̂reg

n = lim inf
δ→0

K̂reg
n (δ).

Remark 6.9. Given an unstable curve W , recall the standard definition
of n-complexity of W as the number of connected components of FnW .
Lemma 6.7 implies that regular complexity does not exceed standard
complexity. Observe moreover that while standard complexity is non-
decreasing in n, regular complexity is not necessarily so (e.g. the image
of a regular component of FnW may contain no regular component).
Finally, all the above quantities are non-decreasing in k0.

For future use, we note that Lemmata 4.22(a) and 6.7 imply that,
provided k0 is sufficiently large and δ is sufficiently small, the following
trivial estimate holds:

Kreg
n (δ) ≤ 3n.(6.6)

Let us now define Lreg, L̂reg (resp. L∗, L̂∗) as we did above for L and

L̂, but summing only on regular (resp. nearly grazing components).
For instance:

L∗n = lim inf
δ→0

sup
W :|W |α≤δ

∑
i

∗ 1

Λi,n

,

where
∑∗ denotes that the sum is restricted only to nearly grazing

components. The following lemmata will allow us to prove Proposi-
tion 6.5.

Lemma 6.10 (Control for nearly grazing components). For any N > 0
and ε > 0, we can choose k0 large enough in the definition of homo-
geneity strips so that L∗n < ε for any 0 < n ≤ N .

Lemma 6.11 (Bound on regular complexity). If the Fermi–Ulam model
is regular at infinity, there exists n̄ such that if k0 in the definition of
homogeneity strips is large enough and δ is sufficiently small then

(6.7) L̂reg
n̄ (δ) ≤ 1

2
.

The proofs of the two above lemmata are independent of each other.
Lemma 6.10 is proved in Section 6.3, whereas the proof of Lemma 6.11
occupies Sections 6.4 and 6.5.

Observe that Lemma 6.10 allows to prove that

L1 <∞.(6.8)
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In fact, we have L1 = Lreg
1 + L∗1; by Lemma 6.10, the second term

can be made as small as needed, and by Lemma 4.22(a), provided that
|W |α is small enough, the first term is at most 3 · Λ−1, where Λ is a
lower bound for (4.24b).

Combining these two results yields21 the proof of the Expansion Es-
timate:

Proof of Proposition 6.5. Let W be an unstable curve so that |W |α < δ
with δ > 0 sufficiently small. Recall that Λ is the minimal expansion
of F̂ in the α-metric (see (4.27)). Observe that by definition, for any
n > 0

L̂n(W ) = L̂reg
n (W ) + L̂∗n(W ).

In view of Lemma 6.11 it is enough to show that, if δ is sufficiently
small, we have L̂∗n < 1/2 for all 0 < n ≤ n̄ where n̄ is from Lemma 6.11.
By Proposition 4.4 there exists w̄ = w̄(n̄) so that, if W ⊂ {w > w̄},
then F̂nW has no nearly grazing H-components for any 0 < n ≤ n̄.
Thus, by (4.2) and Proposition 4.4(b), we conclude that there exists

a uniform n̄′ ∼ n̄(w̄ + n̄) so that N̂i,n ≤ n̄′ for any nearly grazing H-

component Ŵi,n. Thus∑
i

∗ 1

Λ̂i,n

=
n̄′∑
k=1

∑
i:N̂i,n=k

∗ 1

Λ̂i,n

≤
n̄′∑
k=1

∑
j

∗ 1

Λj,k

.

Hence, it is sufficient to apply Lemma 6.10 with N = n̄′ and ε = 1/(4n̄′)
to obtain both (6.4) (with C = K + 1/2) and (6.5).

The uniform bound on L̂n for all n follows since L̂m+n ≤ L̂mL̂n.
Namely, let n = pn̄+ r, where 0 ≤ r < n̄. Then

L̂n ≤ L̂pn̄ · L̂r1 ≤ C n̄. �

6.3. Control for nearly grazing components.

Proof of Lemma 6.10. We prove the lemma by induction on N . Let us
first assume N = 1 and let W̃ ′ be a connected component (rather than
an H-component) of FW . If we restrict to H-components contained in
W̃ ′, we obtain ∑

i

∗ 1

Λi,1

≤
∑
k≥k0

C#k
−2
0 = C#k

−1
0 .

Were the number of connected components W̃ ′
i of FW uniformly bounded,

our claim would thus be proved. As we already observed, this is not

21 The proof given below is similar to the one used in [18, Main Theorem].
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the case. Fix n∗ sufficiently large. Lemma 4.22(a) ensures that, except
for finitely many (i.e. 3) connected components of FW , all the others
will intersect cells D−ν with ν ≥ n∗. Moreover, by Lemma 4.22(b), D−ν
will intersect only homogeneity strips Hk for k > C#ν

1/4. Denote by
W[ν,k],1 the H-component of FW such that W[ν,k],1 ⊂ Hk ∩ D−ν . Then
using (4.30), estimating the flight time by ν and the relative velocity
by k−2 we conclude that the expansion of W[ν,k],1 satisfies

Λ[ν,k],1 > C#νk
2.

We thus gather that, if n∗ is sufficiently large and W is sufficiently
short, then

∑
i

∗ 1

Λi,1

≤ C#k
−1
0 +

∑
ν≥n∗

∑
k≥C#ν1/4

1

Λ[ν,k],1

≤ C#k
−1
0 +

∑
ν≥n∗

C#ν
−5/4 ≤ C#(k−1

0 + n−1/4
∗ ).

The last expression can then be made as small as needed by choosing
k0 and n∗ sufficiently large. We thus obtained our base step: for any
ε > 0, if k0 is sufficiently large we have

L1 < ε.

Using the above notation, we assume by inductive hypothesis that for
any ε > 0 we can choose k0 large enough in the definition of homo-
geneity strips so that L∗n < ε and we want to show that L∗n+1 < ε. In
order to prove the inductive step, observe that for any u-curve W , we
have the following inductive relation summing over the H-components
Wi,1 of FW :

L∗n+1(W ) ≤
∑

i:Wi,1 is reg.

1

Λi,1

L∗n(Wi,1) +
∑
i

∗ 1

Λi,1

Ln(Wi,1).(6.9)

By Proposition 4.15(b), there exists 0 < Λ < 1 so that Λi,n > Λn for
any n > 0. Thus, for any δ sufficiently small, (6.6) and our inductive
assumption imply the following rough bound on Ln(δ):

Ln(δ) ≤ 3n

Λn + L∗n(δ) ≤ 2
3n

Λn .(6.10)
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Using (4.43) we get that if |W |α < δ, then |Wi,1|α < C∗δ
1/4. Hence

by (6.9) and using once again (6.6), if |W |α < δ:

L∗n+1(δ) ≤
∑

i:Wi,1 is reg.

1

Λi,1

L∗n(C∗δ
1/4) +

∑
i

∗ 1

Λi,1

Ln(C∗δ
1/4)

≤ 3

Λ
L∗n(C∗δ

1/4) + L∗1(W )Ln(C∗δ
1/4).

Using the inductive hypothesis and (6.10), taking lim infδ→0 we gather
that L∗n+1 < C#ε, which concludes the proof of the inductive step. �

6.4. Control on regular complexity. In this section we prove that
we can bound the induced regular complexity K̂reg

n , needed to prove
Lemma 6.11, by means of two other quantities. One is the virtual
complexity introduced in Subsection 6.1 and the other is the pointwise
complexity which we now proceed to define.

Let x ∈M and let Qn be a connected component ofM\Sn so that
clQn 3 x. We say that Qn is n-regular at x if

lim
Qn3x′→x

F lx′ ∈ clH0 for all 0 < l ≤ n;

otherwise Qn is said to be nearly grazing at x.

Definition 6.12. Given a point x ∈ M and n > 0, we define the
n-regular complexity at x, denoted with Kreg

n (x), to be the number of
components ofM\Sn whose closure contain x and that are n-regular
at x. We then define:

Kreg
n = sup

x∈M
Kreg
n (x).

Recall that Ŝn denotes the singularity set of F̂n and let Q̂n be a

connected component of M̂\Ŝn. By the discussion prior to Lemma 4.2

we conclude that there exists N̂n(Q̂n) so that for any x ∈ Q̂n we have

F̂n(x) = F N̂n(Q̂n)(x). Suppose now that x ∈ cl Q̂n; we say that Q̂n is
n-regular at x if

lim
Q̂n3x′→x

F lx′ ∈ clH0 for all 0 < l ≤ N̂n(Q̂n).

Define K̂reg
n (x) to be the number of connected components of M̂ \ Ŝn

whose closure contains x and which are n-regular at x. Set

K̂reg
n = sup

x∈M̂
K̂reg
n (x).(6.11)

If the phase spaceM were compact (as it is in the case of dispersing

billiards) then K̂reg
n (see Definition 6.8) and K̂reg

n would coincide (see
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case (a) in the proof of Lemma 6.13 below). Since our the phase space
is not compact, we need a more careful analysis, which we provide
below.

Lemma 6.13. Suppose that for some n̄ we have

(6.12) K̂reg
n̄ <

Λn̄

2
and Kn̄(∆) ≤ Λn̄

∆

4Ĉ
where Λ is the minimal expansion in α-metric, Λ∆ is the expansion
of the limiting map, defined by (4.22), and Ĉ is from Corollary 4.14,
then (6.7) holds.

Proof. Assume by contradiction that (6.7) were false. Then there would
exist a sequence of unstable curves (W (m))m so that |W (m)|α → 0 as

m→∞ and L̂reg
n (W (m)) > 1

2
for any m > 0. Observe that

L̂reg
n (W ) ≤ K̂reg

n (W )

mini Λi,n

.(6.13)

Pick arbitrary points x(m) ∈ W (m). After possibly passing to a subse-
quence we can assume that one of the two possibilities below hold.

(a) the sequence x(m) is bounded;
(b) the sequence x(m) tends to infinity.

We analyze these two cases separately.
Case (a). In this case we estimate the denominator of (6.13) by Λn

obtaining

K̂reg
n (W ) >

Λn

2
.(6.14)

Since the sequence x(m) is bounded, combining (6.6) with (4.2) we

gather that (K̂reg
n̄ (W (m)))m is also a bounded sequence. We can there-

fore assume (possibly passing to a subsequence) that K̂reg
n̄ (W (m)) = Kn̄

for all m.
As noted earlier, the set M̂ \ Ŝ n̄ is the union of a countable number

of connected components. By Lemmata 3.12 and 4.2, to each such
component22 Q̂ we can uniquely associate a N̂(Q̂)-tuple

ν̄(Q̂) = (ν0, ν1, · · · , νN̂(Q̂)−1) where νi ∈ {R, 0, 1, · · · }
so that

Q̂ = M̂ ∩
N̂(Q̂)−1⋂
l=0

F−lD+
νl
.

22We drop the subscript n̄ as this is fixed once and for all and will not cause any
confusion
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For 0 ≤ i < K̂reg
n̄ , denote with W

(m)
i the preimage under F̂ n̄ of the i-th

regular H-component of F̂ n̄W (m). Let Q̂
(m)
i be so that W

(m)
i ⊂ Q̂

(m)
i .

By Lemma 6.7 Q̂
(m)
i 6= Q̂

(m)
j if i 6= j.

Since F̂ n̄W (m)
i is regular, we must have νl(Q̂) ∈ {R, 0, 1, · · · , ν∗} for

all 0 ≤ l < N̂(Q̂) and some ν∗ > 0. Since the sequence (W (m))m
is bounded, we conclude by (4.2) that (N̂(Q̂

(m)
i ))m is also a bounded

sequence.
Since there are only finitely many Q̂’s which satisfy these require-

ments, we can always assume (extracting a subsequence if necessary)

that Q̂
(m)
i = Q̂

(m′)
i for any m,m′; for ease of notation we will denote

such connected components simply by Q̂i.

Let us now choose arbitrarily points x
(m)
i ∈ W

(m)
i ⊂ Q̂i. Since

(x
(m)
i )m is a bounded sequence, we can assume (extracting a subse-

quence if necessary) that x
(m)
i → x̄i for some x̄i ∈ cl Q̂i. On the other

hand, since |W (m)|α → 0 and | · |α is equivalent to the Euclidean norm if
w is bounded, it must be that x̄i = x̄j for every 0 ≤ i, j < Kn̄. We call

this common limit point x̄. Since F̂ n̄W (m)
i is regular, we conclude that

each of the Q̂i’s is regular at x̄. We conclude that Kn̄ ≤ K̂reg
n̄ (x̄) ≤ K̂reg

n̄ ,
which contradicts (6.14) by the first estimate in (6.12).

Case (b). In this case we estimate the denominator of (6.13) using
Corollary 4.14 obtaining

L̂reg
n (W ) ≤ K̂reg

n (W )

ĈΛn
∆

.

Observe that if we show K̂reg
n̄ (W (m)) ≤ 2Kn̄(∆) for all but finitely

many m’s, then (6.7) follows from the second estimate in (6.12). We
proceed by contradiction and assume (possibly extracting a subse-
quence) that |W (m)|α → 0, min

W (m)
w →∞, but

K̂reg
n̄ (W (m)) ≥ 2Kn̄(∆) + 1 for all m > 0.

Recall the definition (see (4.7)) of the fundamental domains Dn = {x ∈
M̂ s.t. N̂(x) = n}. Similarly to (6.1), we define, for k > 0:

Dn0,n1,··· ,nk−1
=

k−1⋂
j=0

F̂−jDnj .
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A k-tuple (n0, n1, · · · , nk−1) is said to be F̂-admissible ifDn0,n1,··· ,nk−1
6=

∅. If x ∈ Dn0,n1,··· ,nk−1
, we say that (n0, n1, · · · , nk−1) is the23 k-itinerary

of x. Define a sequence (Nm)m so that W ′(m) := W (m) ∩ DNm 6=
∅ and K̂reg

n̄ (W ′(m)) ≥ Kn̄(∆) + 1. Such a sequence exists since any
sufficiently short unstable curve intersects at most two domains DN .
Passing to the (τ, I)-coordinates and taking a subsequence we may

assume that T−NmW
′(m) converges to some point x̄ ∈ cl (D̂0), where

Tn is the translation map defined in (4.12). The convergence in the
α-metric implies convergence in the (τ, I)-Euclidean metric by (4.17).

Since F̂ n̄ is continuous on the set of points with a given itinerary,

it follows that there are points x
(m)
1 , x

(m)
2 . . . x

(m)
Kn̄(∆)+1 ∈ W ′(m) having

different k-itineraries. Possibly by extracting a subsequence, we may
thus assume that for 1 ≤ l ≤ Kn̄(∆) + 1

x
(m)
l ∈ DNm,Nm+n1,l...Nm+nn̄−1,l

,

that is, that the itinerary depends on Nm only via the shift by Nm. But
then, Theorem 4.6 implies that x̄ ∈ D̂0,n1,l...nn̄−1,l

for every l, therefore
Kn̄(x̄) ≥ Kn̄(∆) + 1, which contradicts the definition of Kn̄(∆). �

6.5. Linear bound on regular complexity. In this section we prove
a linear bound for K̂reg

n defined by (6.11).

Lemma 6.14. For any n > 0 we have

K̂reg
n < 4n+ 2.(6.15)

The induced regular complexity K̂reg
n bounds the number of con-

nected components of M̂ \ Ŝn that are regular at any point x. Since
such connected components are bounded by C1 curves, it is possible to
formulate an equivalent infinitesimal definition, which we now describe.

For x ∈ M, denote by ΘxM the unit tangent sphere at x. We
identify each element of υ ∈ ΘxM with the equivalence class of C1-
curves in M which emanate from x with a tangent vector that is a
positive multiple of υ. Of course ΘxM embeds naturally in TxM; this
embedding defines a topology on ΘxM. Observe that if x ∈ intM,
then ΘxM = S1, but if x ∈ S0, then ΘxM is a closed quarter-sphere if
x = (0, 0) or x = (1, 0) and a closed half-sphere otherwise. All such sets

23 In Section 6.1 we gave similar definitions for domains given in terms of the
normal form. It must be noted that here we do not take the closure in the definition
of the Dn0,n1,··· ,nk−1

’s, hence we can define the itinerary (as opposed as an itinerary)
of a point x. The reason for this mismatch is that the Dn’s are defined dynamically
(as opposed to the geometric definition of D̂n) , and thus their boundary carry
some dynamical information which we want to preserve.
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will be considered with the counterclockwise orientation. Similarly, we

define, for any x ∈ M̂, the set ΘxM̂.
A C1-curve in M emanating from x thus naturally induces an el-

ement of ΘxM. In particular if x ∈ Sn, then the curves in Sn cut
ΘxM into a number of connected components which we call tangent
sectors. With a slight abuse of notation we write ΘxM \ Sn to de-
note ΘxM \ {υ1, · · · , υp} where the υi’s are the unit vectors induced
by the curves of Sn which meet at x. Similar considerations apply to

M̂ and Ŝn.
More generally, given two elements υ− 6= υ+ ∈ ΘxM let V =

V(υ−, υ+) denote the set of directions lying between υ− and υ+ with
respect to the counterclockwise orientation. This set will be called the
tangent sector centered at x bounded by υ− and υ+. Conventionally,
we also introduce the notion of empty sector V = ∅ and full sector
V = ΘxM. A curve Γ which emanates from x with unit tangent vector
υ ∈ V is said to be compatible with V.

Note that all sufficiently short curves compatible with V ⊂ ΘxM\Sn
necessarily belong to the same connected component Qn. Likewise, all

sufficiently short curves compatible with V ⊂ ΘxM̂ \ Ŝn necessarily

belong to the same connected component Q̂n = Q̂n(V). We denote

N̂n(V) = N̂n(V(Q̂n)).
Let V ⊂ ΘxM\ Sn and Γ be a curve compatible with V. By con-

struction we have that lim
Γ3x′→x

F lx′ is well defined and independent of

Γ for any 0 ≤ l ≤ n. Let us denote this limit point xlV. Likewise, if

V ⊂ ΘxM̂ \ Ŝn, we can uniquely define xlV for any 0 ≤ l ≤ N̂n(V).
Let V ⊂ ΘxM \ Sn; we can define for any 0 ≤ l ≤ n the image

sector Vl ⊂ ΘxlV
M \ S−l,n−l as follows. Let Γ be a curve compatible

with V. By construction we have that lim
Γ3x′→x

dF l(x′) is a well defined

linear map and independent of Γ for any 0 ≤ l ≤ n. We denote its
action on ΘxM by F l∗,V : ΘxM→ ΘxlV

M. Then, with a small abuse of

notation we denote with F l∗V the sector F l∗,VV. A similar construction

yields, for any V ⊂ ΘxM̂ \ Ŝn and any 0 ≤ l ≤ n the definition of

F̂ l∗V ⊂ Θ
x
N̂l(V)

V
M̂ \ Ŝ−l,n−l.

A tangent sector V ⊂ ΘxM \ Sn is said to be Fn-regular if it is
non-empty and xlV ∈ clH0 for any 0 < l ≤ n. Otherwise, we say that

the sector is nearly grazing. Likewise, a tangent sector V ⊂ ΘxM̂ \ Ŝn
is said to be F̂n-regular if it is non-empty and xlV ∈ clH0 for any

0 < l ≤ N̂n(V).
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Of course the above definitions are compatible with the ones given
previously for Qn and Q̂n in the sense that a sector V ∈ ΘxM\ Sn is
Fn-regular if and only if the corresponding connected component Qn

is n-regular at x, and a sector V ∈ ΘxM̂ \ Ŝn is F̂n-regular if and only

if the corresponding connected component Q̂n is n-regular at x. This
immediately follows by our construction unless the connected compo-
nent joins x with a cusp (i.e. the corresponding sector is empty). But
then we claim that the component must necessarily be nearly grazing
at x. In fact, it is easy to see that if the sector generated by a con-
nected component Q̂n is degenerate, then there exists 0 < l ≤ N̂n(Q̂n)
so that dF l|Q̂n is singular as we approach x. Since dF is singular only

at {w = 0}, Q̂n cannot be a regular at x.
In particular the regular complexity Kreg

n is the maximum number
of Fn-regular sectors in which Sn cuts ΘxM for any x ∈ M. The
corresponding statement holds true for K̂reg

n .

Definition 6.15. A tangent sector V(υ−, υ+) ⊂ ΘxM (or V(υ−, υ+) ⊂
ΘxM̂) is said to be good if

(i) υ+, υ− ∈ Nx (recall definition (2.7a)) and
(ii) the angle between υ− and υ+ does not exceed π.

A good tangent sector V(υ−, υ+) is said to be active if υ− and υ+

belong to different quadrants, and inactive if they belong to the same
quadrant.

Observe that an active good sector contains either the first or the
third quadrant (in particular, the stable cone); inactive sectors cannot
contain any such quadrants. In particular, since future singularities are
union of stable curves (Lemma 3.2), if a good sector V ⊂ ΘxM (resp.

V ⊂ ΘxM̂) is inactive, then for any k > 0 we have V ⊂ ΘxM \ Sk
(resp. V ⊂ ΘxM̂ \ Ŝk).

Good sectors satisfy the following invariance property.

Lemma 6.16. Let V ⊂ ΘxM be a good sector, and V \ S1 =
⋃s
i=1 Vi.

Then each image sector F∗Vi is good. Similarly, if V ⊂ ΘxM̂, and
V\Ŝ1 =

⋃s
i=1 Vi, we have that each image sector F̂∗Vi is a good sector.

Proof. First of all observe that the image by a linear map of a sector
of angle at most π is a sector of angle at most π. We conclude that
item (ii) in Definition 6.15 holds for each of the image sectors.

Let υ be one of the boundary vectors of Vi. There are two possi-
bilities: either υ is one of the boundary vectors of V, or it is induced
by S1. In the first case, υ ∈ Nx and thus (2.9) implies that its image
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FVi,∗υ ∈ Cu
FVix
⊂ NFVix

. In the second case, we have by construction

that FViυ is tangent to some curve in S−1. Lemma 3.2 then implies
that also in this case FVi,∗υ ∈ NFVix

, which concludes the proof of the
first part. The second part follows from identical considerations. �

Remark 6.17. The above lemma implies in particular that if V ⊂
ΘxM \ Sk is a good sector, then Vl are also good sectors for any
0 ≤ l ≤ n.

The linear bound (6.15) will be obtained by means of the following
lemma, whose proof we briefly postpone.

Lemma 6.18.

(a) Let x ∈ M \ {xC}. Any active good tangent sector V ⊂ ΘxM
is cut by S1 in at most two F-regular sectors. The F-image of
at most one of them is active.

(b) Let x ∈ M̂ \ {xC}. Any active good tangent sector V ⊂ ΘxM̂
is cut by Ŝ1 in at most three F̂-regular sectors. The F̂-image
of at most one of them is active.

We can now prove the main result of this subsection.

Proof of Lemma 6.14. First observe that Lemma 3.14 implies that if x
is sufficiently close to xC, then Fx is also close to xC, which implies

that N̂(x) = 1 and that F̂x 6∈ H0. Hence, no sector V ⊂ ΘxM̂ can be

F̂ -regular. We can thus assume x ∈ M̂ \ {xC}.
Cutting ΘxM̂ along the vertical direction we obtain (up to) 2 good

sectors (recall Remark 4.1); of course both such sectors might be active.
Let V denote one such active sector. We now show inductively that

for any k > 0, the singularity set Ŝk cuts V in at most (2k + 1) F̂k-
regular sectors, and the F̂k-image of at most one of them is active.
Lemma 6.18(b) proves our claim for k = 1. In order to proceed with our
proof, we need to set up some notation: for any k ≥ 1, the singularity

set Ŝk cuts V in a number sk of sectors (V(k)
0 ,V(k)

1 , · · · ,V(k)
sk−1); let rk

denote the number of such sectors that are F̂k-regular. Without loss

of generality we can take them to be (V(k)
0 ,V(k)

1 , · · · ,V(k)
rk−1).

Assume now, by induction, that our claim holds for k; we gather that
rk ≤ 2k + 1 and that the image of at most one of the regular sectors
is active. If no sector is active, no further cutting is allowed, so we are
done. Hence we assume that one sector is active and without loss of
generality we let it be indexed as V(k)

0 .

Consider now the F̂k+1-regular sectors (V(k+1)
0 ,V(k+1)

1 , · · · ,V(k+1)
rk+1−1)

obtained by cutting V by Ŝk+1. By definition of F̂k+1-regularity, for
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any 0 ≤ i < rk+1 there exists 0 ≤ j < rk so that V(k+1)
i ⊂ V(k)

j .

However, if Ŝk+1 cuts V(k)
j , then it must be that its F̂k-image is cut

by Ŝ1, but this is only possible if said image is active, i.e. if j = 0.
Applying Lemma 6.18(b) to this sector, we thus conclude that it can
be cut it at most three regular sectors and that the image of at most
one of them is active. This in turn proves that rk+1 ≤ rk + 2. This
proves our claim for k + 1.

Since ΘxM̂ consists of at most two active sectors we conclude that
x has at most 2(2n + 1) regular sectors when cut by Ŝn. Since x was
arbitrarily, this proves (6.15). �

Proof of Lemma 6.18. We first show how item (b) follows from item (a).

Recall that F̂ is the first return map of F to the set M̂, which is defined
in (4.1). Recall also (see (4.8)) that Dn ∩ Sn−1 = ∅ for any n > 0, and

that Dn∩ Ŝ1 = Dn∩ (F−(n−1)S1). Since by definition
⋃
n≥0 clDn = M̂

and clDn ∩ clDn′ = ∅ unless |n− n′| ≤ 1, there are two possibilities:

(i) there exists a unique n so that x ∈ clDn;
(ii) x ∈ clDn ∩ clDn+1 for some n.

Assume first that possibility (i) holds. SinceDn∩Sn−1 = ∅, we conclude

that Ŝ1 cuts V in as many (regular) sectors as S1 cuts Fn−1
∗ V. This

shows that, in this case, item (a) implies item (b).
Next, suppose that possibility (ii) holds. Also in this case x 6∈ Sn−1,

so we can define the sector V∗ = Fn−1
∗ V. By item (a), the singularity set

S1 cuts V∗ in at most two F -regular sectors (V∗0,V∗1). By Lemma 6.16
the image of both of them is a good sector and of the image of at most
one of them (say V∗0) may be active. Since x ∈ clDn+1, some of these
sectors may belong to Dn+1; for such sectors we need to consider the
cutting by S2. If V∗0 is disjoint from Dn+1 or its image is not active, we
are done, since no further cutting can take place. On the other hand, if
V∗0 belongs to Dn+1 and its image is active, it might be cut by S2 into
further sectors. Applying (a) to FV∗0 we gather that S2 can cut V∗0
into at most two F2-regular sectors, the F2-image of both of them is a
good sector and of at most one of them is active. This proves that (a)
implies (b) also in case (ii). Note that we have at most two sectors in
case (i) and at most three in case (ii).

It remains to prove item (a). If x 6∈ S1, or x ∈ S0 \ cl (S1 \ S0), the
map F is smooth in a neighborhood of x and the statement immediately
follows.

We thus assume that x ∈ cl (S1 \ S0). Recall (see Lemma 3.10(a-b))
that x can belong to at most one of the S+

ν and, possibly, to S+
R .
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If x ∈ S+
R , then, by Lemma 3.6, D+

R induces a sector which is not
F -regular. Hence, only cells D+

ν can induce F -regular sectors and by
Lemma 3.12 there are only two possibilities:

(a) there exists a unique ν so that D+
ν so that x ∈ clD+

ν .
(b) there exist two consecutive cells D+

ν and D+
ν+1 so that x ∈

clD+
ν ∩ clD+

ν+1 (and x does not intersect the closure of any
other cell.)

This already establishes that V is cut by S1 in at most two F -regular
sectors. We now need to prove that at most one of their images is an
active sector. Observe that if V is cut in fewer than two regular sectors,
there is nothing left to prove. This is the situation, in particular, in
case (a).

V1

V0

υS

υ+

υ−
x

V′0

υ′S

υ′−

x′V0

V′
1
υ′S

υ′+

x′V1

V1

V0

υS
υ+

υ−

x

V′0
υ′S

υ′−

x′V0

V′
1

υ′S

υ′+

x′V1

V1

V0

υS

υR

υ−
x

V′0
υ′S

υ′−

x′V0

V′
1

υ′S
υ′R

x′V1

Figure 6. The three possible cutting cases for V by Ŝ1

in regular sectors (on the left), and their images (on the
right) by the two differentials F∗,V0 and F∗,V1 respec-
tively.
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In case (b), we necessarily have that x ∈ S+
ν . We subdivide the

argument into two further subcases: (i) x 6∈ S+
R ; (ii) x ∈ S+

R .
In case (i), S+

ν cuts V in exactly two sectors, induced by D+
ν and

D+
ν+1. Notice that these two sectors have a common boundary vector,

which is induced by S+
ν : we can then write the two sectors as (see

Figure 6, first and second row) V0 = V(υ−, υS) and V1 = V(υS , υ+).
We say we are in case i′ if V contains the first quadrant (see first row
of Figure 6) and in case i′′ if V contains the third quadrant (see second
row of Figure 6).

Consider first case i′. By inspection we gather that V0 is induced
by D+

ν+1 and V1 is induced by D+
ν . Since we assume both sectors to be

regular, Lemma 3.12(c) implies that

lim
y→x
FV0x ∈ {0} × R+, lim

y→x
FV1x ∈ {1} × R+.

Thus the image F∗,V0υS (resp. F∗,V1υS ) is a vertical vector. Moreover,
since υS lies in the first quadrant), then both its images are vertical
vectors pointing upwards. The other boundary vector of each Vi is one
of the original vectors υ±, and thus its image is unstable. Since F∗,Vi is
orientation preserving, we conclude that only one of the images of Vi’s
can be an active sector (see again Figure 6, row 1).

Case i′′ is completely analogous. In this case V0 is induced by D+
ν

and V1 is induced by D+
ν+1. Once again, since both sectors are regular,

we gather by Lemma 3.12(c) that

lim
y→x
FV0x ∈ {1} × R+ lim

y→x
FV1x ∈ {0} × R+.

Hence the image F∗,V0υS (resp. F∗,V1υS ) is a vertical vector. Moreover,
since υS lies in the third quadrant, then both its images are vertical
vectors pointing downwards. The other boundary vector of each Vi is
one of the original vectors υ±, and thus its image is unstable . Since
F∗,Vi is orientation preserving, we conclude that only one of the im-
ages of Vi’s can be an active sector (see Figure 6, second row). This
completes the proof in case (i).

In case (ii), combining Lemma 3.10 (we need the part concerning
S+!) with Lemma 3.6 we gather that x is the right endpoint of S+

ν .
Therefore S+

ν will cut V only if V contains the third quadrant. Thus, if
V contains the first quadrant, then S+

ν does not cut V. Thus V could
only be cut by S+

R and by an earlier discussion V contains at most one
regular sector, so we are done.

It remains to consider the more difficult case in which V contains the
third quadrant (Figure 6, bottom row). Since x is the right endpoint
of S+

ν , we conclude that the vector induced by S+
ν must meet with S+

R
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on the left. Therefore the two regular sectors are V0 = V(υ−, υS) and
V1 = V(υS , υR). As in case i′′, we have that V0 is induced by D+

ν

and V1 is induced by D+
ν+1; the vector υR is induced by S+

R . Following
the same reasoning as in case i′′ above, we conclude that the image
F∗,V0υS (resp. F∗,V1υS ) is a vertical vector pointing downwards. The
image F∗,V0υ− is of course unstable and belongs to the second quadrant.
The image of υR is also in N (as it will be induced by some curve in
S−1) and points downwards. Hence, only V′0 is active.

This concludes the argument in case (ii) and finishes the proof. �

7. Invariant manifolds.

The expansion estimate proved in the previous section is the main
ingredient for the so-called Growth Lemma (Lemma 7.2). In turn the
Growth Lemma constitutes the backbone for proving ergodicity using
the Hopf argument, as will be done in the next section. The Hopf argu-
ment relies on existence of a large set of points which have sufficiently
long stable and unstable manifolds. The present section contains nec-
essary results about the existence of stable and unstable manifolds as
well as regularity of partition of the phase space into stable and unsta-
ble manifolds. In this section we always assume that the Fermi–Ulam
model is regular at infinity. As a notational convention, in an attempt
to simplify our notation, in this section we drop the superscripts from
dWα (·, ·), as they can be unambiguously recovered from the context.

7.1. The Growth Lemma. In this section we state and prove a ver-
sion of the Growth Lemma for our system. This lemma will allow to
obtain, in the next subsection, a good lower bound on the length of
stable and unstable manifolds passing through most of the points.

Let W be an unstable curve and x ∈ W . x subdivides W into two
subcurves. We define rW (x) as the α-length of the shortest of the two
subcurves. The function rW (x) measures, in an appropriate way, the
distance of x to the boundary of W . Observe that if W is weakly
homogeneous, we have, by (4.38), rW (x) < C#dα(x,S).

Observe moreover that

LebW (rW (x) < ε) = min{2ε,LebW (W )}(7.1)

(recall that LebW denotes Lebesgue measure on the curve W with
respect to the α-metric).

Given an unstable curve W, a point x ∈ W and n ≥ 0, we define
Wn(x) as follows. If x ∈ SnH we let Wn(x) = ∅; otherwise we let Wn(x)
to be the H-component of FnW that contains Fnx (recall the discussion
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before Proposition 6.5). Then we define rW,n(x) = rWn(x)(Fnx) (or 0 if
Wn(x) = ∅).

Likewise, given an unstable curve W , x ∈ W and n ≥ 0, we define

Ŵn(x) and r̂W,n as follows. Recall the definition of N̂n given before

Remark 4.3; if N̂n(x) is not defined, we let Ŵn(x) = ∅ and r̂W,n(x) = 0.

Otherwise we let Ŵn(x) = WN̂n(x)(x) and r̂W,n(x) = rW,N̂n(x)(x).

Lemma 7.1. We have rW,0 = r̂W,0 = rW and

rW,n(x) < C#dα(Fnx,S).(7.2)

Moreover, there exists C > 1, so that if FnW is a single H-component,
then for any x ∈ W :

rW,n(x) > C−1Λn̂(FnW )rW (x),(7.3)

where Λ is the constant appearing in (4.27) and n̂ was defined in (4.6).

Proof. The first two items follow immediately from the definition and
from our previous observation. We thus need to prove (7.3). By defi-
nition rW,n(x) = |W ′

n(x)|α, where W ′
n(x) is shortest subcurve of Wn(x)

joining xn with ∂Wn(x). Since FnW is a single H-component, we con-
clude that Wn(x) = FnW . Thus W ′

n(x) connects xn with ∂FnW , and
F−nW ′

n(x) connects x with ∂W . In particular |F−nW ′
n(x)|α ≥ rW (x).

Then the proof follows from (4.39a), (4.27) and the definition of n̂. �

The following is the classical Growth Lemma.

Lemma 7.2 (Growth Lemma for r̂). Suppose that the Fermi–Ulam
model is regular at infinity. Then there exists 0 < θ < 1 and C > 0 so
that for any sufficiently short mature admissible unstable curve W ⊂
M, any ε > 0 and any n > 0

LebW (r̂W,n(x) < ε) ≤ CεLebW (W ) + CLebW (rW (x) ≤ θnε) .(7.4)

Proof. The proof of the Growth Lemma follows via relatively standard
arguments (see [9, Sections 5.9 and 5.10]) from the expansion estimate
(Proposition 6.5) and the distortion bounds proved in Corollary 5.11.

Recall the definition of L̂n given right before Proposition 6.5, and
let n̄ be the number appearing in Proposition 6.5. We fix δ > 0 to be
sufficiently small so that θ̄ = e2CDδ

1/12L̂n̄ < 1 (where CD is the constant
appearing in Corollary 5.11) and that Lemma 4.20(b) holds with k = n̄
and δ∗ = 1.

Let us first assume that W ⊂ M̂ and that |W |α < δ. Then we claim
that there exists C̄ > 0 so that for any ε > 0:

LebW (r̂W,n̄(x) < ε) < C̄εLebW + LebW (rW (x) < e−CDδ
1/12

θ̄ε).(7.5)
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As we observed in Corollary 5.11, our distortion bounds on unstable
curves depend on their length. In this proof we will need very fine
distortion bounds, and it will then be necessary to work only with
sufficiently short unstable curves. This entails a partitioning scheme
for H-components that we now proceed to describe. Let {Wi} denote

the set of H-components of F̂ n̄W . We partition each Wi into a number

ki =

⌊
|Wi|α
δ

⌋
+ 1

of subcurves of equal α-length (smaller than δ) that we denote withWij.
Observe that if |Wi|α < δ, ki = 1, and no shortening takes place. We

call such subcurves shortened H-components of F̂ n̄W . We will shorten
the H-components inductively every n̄ steps of the induced map F̂ .
By our choice of δ, this guarantees that at each intermediate step, no
H-component will have α-length exceeding 1. Given x ∈ W , we will
then denote with Ŵ ′

n(x) the shortened H-component of F̂nW whose

interior contains F̂nx (or ∅ if some image of x lies on an endpoint of a

shortened subcurve). We then define r̂′W,n(x) = rŴ ′n(x)(F̂nx). Observe

that r̂′W,n̄ < r̂W,n̄, so that proving (7.5) for r̂′W,n will imply (7.5) for
r̂W,n. Let Bij ⊂ Wij be the ε-neighborhood (in the α-metric) of the
boundary of each Wij; in particular LebWij

(Bij) = 2ε. Then

LebW (r̂′W,n̄(x) < ε) =
∑
ij

LebW (F̂−n̄Bij).

By the distortion estimates of Corollary 5.11∑
ij

LebW (F̂−n̄Bij) ≤ eCDδ
1/12
∑
ij

LebW (F̂−n̄Wij)
LebWij

(Bij)

LebWij
(Wij)

.

≤ 2eCDδ
1/12

ε
∑
ij

ki
LebW (F̂−n̄Wij)

LebWi
(Wi)

≤ 2δ−1eCDδ
1/12

ε
∑
ij

LebW (F̂−n̄Wij)+

+ 2eCDδ
1/12

ε
∑
ij

LebW (F̂−n̄Wij)

LebWi
(Wi)

≤ C̄εLebW (W ) + 2eCDδ
1/12

ε
∑
i

LebW (F̂−n̄Wi)

LebWi
(Wi)

≤ C̄εLebW (W ) + 2eCDδ
1/12

εL̂n̄,
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where we defined C̄ = 2δ−1eCDδ
1/12

. Using (7.1), the fact that the left
hand side is always bounded above by LebW , and our definition of θ̄,
we conclude that

LebW (r̂′W,n̄(x) < ε) < C̄εLebW + LebW (rW (x) < e−CDδ
1/12

θ̄ε).(7.6)

which, as noted earlier, implies (7.5).
We now proceed to show that for any k > 0:

LebW (r̂′W,kn̄(x) < ε) ≤ eCDδ
1/12 1− θ̄k

1− θ̄
· C̄εLebW (W )+(7.7)

+ LebW (rW (x) ≤ θ̄kε).

For k = 1 (7.7) follows from (7.6). Let us assume by induction that (7.7)
holds for k and prove it for k+ 1. Let W ′ be a shortened H-component

of F̂kn̄. Notice that by construction W ′ ⊂ M̂ and |W ′|α < δ. Then,
applying (7.5) to W ′ we gather:

LebW ′(r̂
′
W ′,n̄(y) < ε) ≤ C̄εLebW ′(W

′) + LebW ′(r̂W ′(y) ≤ e−CDδ
1/12

θ̄ε).

Let W ′′ = F̂−kn̄, then by Corollary 5.11, we conclude that:

LebW ′′(r̂
′
W ′′,(k+1)n̄(x) < ε) ≤ eCDδ

1/12

C̄εLebW ′′(W
′′)

+ eCDδ
1/12

LebW ′′(r̂
′
W ′′,kn̄(x) < e−CDδ

1/12

θ̄ε).

Summing over all W ′′’s and applying the inductive hypothesis yields:

LebW (r̂′W,(k+1)n̄(x) < ε) ≤

eCDδ
1/12

C̄εLebW (W ) + eCDδ
1/12

LebW (r̂′W,kn̄(x) < e−CDδ
1/12

θ̄ε) ≤

eCDδ
1/12

C̄
1− θ̄k+1

1− θ̄
εLebW (W ) + eCDδ

1/12

LebW (rW (x) < e−CDδ
1/12

θ̄k+1ε),

which yields (7.7) for k + 1. Hence we can write:

LebW (r̂′W,kn̄(x) < ε) ≤ CεLebW (W ) + LebW (rW (x) ≤ θ̄kε).(7.8)

where C = C̄eCDδ
1/12

/(1− θ).
We now extend this estimate to iterates that are not multiples of n̄.

We begin by obtaining a bound on LebW (r̂′W,s(x) < ε) for s < n̄. Notice
that no partitioning into short curves occurs before step n̄, therefore if
{Wi} denotes the set of H-component of F̂ sW , we have

LebW (r̂′W,s(x) < ε) = LebW (r̂W,s(x) < ε) =
∑
i

LebW (F̂−sBi),
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where Bi is a ε-neighborhood of the boundary of Wi. Then we proceed
as before. Since |W |α < δ, we are guaranteed that |W ′|α < 1. Thus,
applying the distortion bounds in Corollary 5.11, we gather:∑

i

LebW (F̂−sBi) ≤ 2eCDε
∑
i

LebW (F̂−sWi)

LebWi
(Wi)

≤ 2eCDεL̂s.

Applying once again (7.1), and observing that by Proposition 6.5 we

have that L̂s is bounded uniformly in s, yields:

LebW (r̂W,s(x) < ε) ≤ LebW (rW (x) < C#ε).(7.9)

Now, for any m > 0, we write m = kn̄ + s, with 0 ≤ s < n̄. Apply-
ing (7.9) to each shortened component W ′ of F̂kn̄W yields:

LebW ′(r̂W ′,s(y) < ε) ≤ LebW ′(rW ′(x) < C#ε).

Taking W ′′ = F̂−kn̄W ′ ⊂ W , and applying the distortion bounds:

LebW ′′(r̂W ′′,kn̄+s(x) < ε) ≤ eCDδ
1/12

LebW ′′(r
′
W ′′,kn̄(x) < C#ε).

Now summing over all W ′′ and applying (7.8), we finally conclude that

LebW (r̂W,kn̄+s(x) < ε) ≤ eCDδ
1/12

CεLebW (W ) + LebW (rW (x) ≤ C#θ̄
kε).

Choosing θ = θ̄1/n̄ and C = C#θ
−1 yields (7.4) under the assumption

W ⊂ M̂ and |W |α < δ.

Now, observe that, given an unstable curve W , for any x ∈ W , Ŵ1(x)

is either ∅ or it is a curve W ′ ⊂ M̂. By Lemma 4.20, it is possible to
assume W so short that each W ′ is such that |W ′|α < δ. By applying
once again the distortion argument, we deduce that (7.4) holds in the
general case, by suitably increasing the constants. �

We are now going to complement the Growth Lemma above (which

involves iterates of W by F̂) with some estimates on the length of the
iterates of unstable curves by F . More precisely, let W be an unstable
curve and x ∈ W : we define:

r̄W (x) = min
0≤n<N̂(x)

rW,n(x),

with the convention that if N̂(x) is undefined, then r̄W (x) = 0.

Lemma 7.3 (Transient growth control). There exists C > 0 so that
for any sufficiently short mature admissible unstable curve W :

LebW (r̄W (x) < ε) < LebW (rW (x) < Cε).
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Proof. The proof follows from distortion arguments similar to the ones
given in the proof of the Growth Lemma. Assume that |W |α < δ. Fix
w∗ > 0 sufficiently large. Assume first that W ⊂ {w ≤ w∗}. Then

there exists N∗ = C#w∗ so that N̂(x) < N∗ for any x ∈ W . Thus:

LebW (r̄W (x) < ε) ≤
N∗−1∑
n=0

LebW (rW,n(x) < ε).

We proceed to obtain a bound on LebW (rW,n(x) < ε). Let us fix n > 0
and let {Wi} denote the set of H-components of FnW ; let Bi be an
ε-neighborhood of the boundary of Wi. Then

LebW (rW,n(x) < ε) =
∑
i

LebW (F−nBi).

Assuming |W |α < δ, we are guaranteed that each component Wi satis-
fies |Wi|α < 1. Hence by our distortion bounds (Corollary 5.11)∑

i

LebW (F−nBi) ≤ 2eCDε
∑
i

LebW (F−nWi)

LebW (Wi)

≤ 2eCDεLn(W )

≤ LebW (rW (x) < eCDLnε).

By (6.3), Ln ≤ Ln1 . Thus Ln ≤ max{1,LN∗1 }, which is bounded
by (6.8). This concludes the proof of the lemma in the case of low
energies.

Let us assume, on the other hand, that W ∩ {w > w∗} 6= ∅. Then
if w∗ is sufficiently large and δ sufficiently small, by Lemma 4.22(b),
W intersects at most two cells E∗n. Such cells partition W in (at most)

two subcurves W1 and W2 so that N̂(x) = N∗ for all x ∈ W1 and

N̂(x) = N∗ + 1 for all x ∈ W2, for some N∗ > 0. Note that

LebW (r̄W (x) < ε) ≤ LebW (r̄W1(x) < ε) + LebW (r̄W2(x) < ε).

Let us consider r̄W1(x); by construction W1 ⊂ E∗N∗ . Since E∗N∗ ∩
SN∗−1 = ∅, we gather that FnW1 is connected for any 0 ≤ n <
N∗. Thus, (7.3) ensures that rW1,n(x) ≤ C−1rW1(x) for any n < N∗,
and therefore r̄W1(x) < C−1rW1(x). By the same token we conclude
r̄W2(x) < C−1rW2(x). Hence

LebW (r̄W (x) < ε) ≤ LebW (rW < 2Cε)

which concludes the proof of the lemma. �

In order to obtain bounds on the length of stable and unstable man-
ifolds, we will need some results similar to the ones presented above,
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but for slightly different functions r. We now proceed to define them
and link their properties to the ones of the functions r that have been
investigated above.

Recall the properties of the singularity sets S± outlined in Lemma 3.10
and define, for N ≥ 0:

S+
(N) = S0 ∪ S+

R ∪
N⋃
ν=0

S+
ν .

For x ∈ W let us define rW (x,S+
(N)) as follows. If x ∈ S+

(N) we set

rW (x,S+
(N)) = 0. Otherwise S+

(N) cuts W into finitely many subcurves.

Let W ′ be the subcurve that contains x and rW (x,S+
(N)) = rW ′(x).

Observe that necessarily rW (x,S+
(N)) ≤ rW (x). Finally define24

r∗W (x) = inf
N>0
{N3/2rW (x,S+

(N))}.

Notice that r∗W (x) ≤ rW (x), and it could, in principle, be much
smaller than rW . However, the measure of points where this possibility
occurs is under control thanks to the following bound.

Lemma 7.4. There exists C > 0 so that for any unstable curve W

LebW (r∗W (x) < ε) ≤ LebW (rW (x) < Cε).

Proof. By Lemma 3.10, we conclude that the set {r∗W (x) < ε} is con-
tained in the union of

• 2 intervals of α-length ε at the boundary of W
• an interval of α-length 2ε centered at each point of W ∩ (S+

R ∪
S+

0 );
• an interval of α-length 2ν−3/2ε centered at each point of W ∩S+

ν

for ν > 0.

Hence

LebW (r∗W (x) < ε) < 2ε(1 + 2 +
∑
ν>0

ν−3/2) < 2C#ε.

Since by definition LebW (r∗W (x) < ε) ≤ LebW (W ), we conclude that

LebW (r∗W (x) < ε) ≤ LebW (rW (x) < Cε). �

Using the above lemma, it is possible to obtain a Growth Lemma
and transient growth control for r∗. Let W be an unstable curve and

24 The motivation for this definition will become clear to the reader in the proof
of Lemma 7.8
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x ∈ W . For n ≥ 0 we define r∗W,n(x) as follows; if x ∈ SnH we let
r∗W,n(x) = 0; otherwise Wn(x) 6= ∅ and we set

r∗W,n(x) = r∗Wn(x)(Fnx).

Likewise, given n ≥ 0, if N̂n(x) is not defined, we let r̂∗W,n(x) = 0.
Otherwise we define

(7.10) r̂∗W,n(x) = r∗
W,N̂n(x)

(x).

Finally, let x ∈ W . If N̂(x) is undefined, we let r̄∗W (x) = 0. Otherwise
let

r̄∗W (x) = min
0≤n<N̂(x)

r∗W,n(x).

We now prove for r̄∗ the same bound that was proved in Lemma 7.3.

Lemma 7.5. There exists C > 0 so that for any sufficiently short
mature admissible unstable curve W ⊂M

LebW (r̄∗W (x) < ε) < LebW (rW (x) < Cε).(7.11)

Proof. Assume |W |α < δ and fix w∗ > 0 sufficiently large. Assume first

that W ⊂ {w ≤ w∗}. Then there exists N∗ = C#w∗ so that N̂(x) < N∗
for any x ∈ W . Thus:

LebW (r̄∗W (x) < ε) ≤
N∗−1∑
n=0

LebW (r∗W,n(x) < ε).

Lemma 7.4 then implies that

LebW (r̄∗W (x) < ε) ≤
N∗−1∑
n=0

LebW (rW,n(x) < Cε).

Now arguing as in the proof of Lemma 7.3, we conclude that (7.11)
holds in this first case.

Assume now that W ∩ {w > w∗} 6= ∅, then if δ is sufficiently small
and w∗ sufficiently large, we conclude by Lemma 4.4(a) that for any

x ∈ W and any 0 ≤ n < N̂(x), Fnx ∈ {w ≥ w∗/2}. First of all
notice that Lemma 3.10 and the construction of E∗n guarantees that
E∗n ∩ S+ = ∅ unless n = 1. By Lemma 3.10(d) S+

ν is compact for
ν > 0. Therefore for large enough w∗, the only possible curve of S+

that intersects with E∗0 ∩{w ≥ w∗/2} is S+
0 , but S+

0 ⊂ ∂E∗0 ; we conclude
that E∗0 ∩ {w ≥ w∗/2} ∩ S+ = ∅. We thus proceed as in the proof
of Lemma 7.3: If w∗ is sufficiently large and δ sufficiently small, by
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Lemma 4.22(b), W intersects at most two cells E∗n; such cells partition
W in (at most) two subcurves W1 and W2. Then

LebW (r̄∗W (x) < ε) ≤ LebW (r̄∗W1
(x) < ε) + LebW (r̄∗W2

(x) < ε).

Notice that FnWi will belong to only one cell E∗ν for any n involved in
the definition of r̄∗Wi

. By the argument above, we gather that r̄∗Wi
= r̄Wi

.
Now we conclude arguing as in the proof of Lemma 7.3. �

7.2. Size of invariant manifolds. Recall that a stable curve W is
a homogeneous stable manifold if |FnW |α → 0 as n → ∞ and FnW
belongs to a single homogeneity strip for any n ≥ 0. Recall also the
corresponding definition for unstable manifolds. Given x ∈ M, we
denote with W s(x) (resp. W u(x)) the maximal homogeneous stable
(resp. unstable) manifold containing x (or ∅ if such manifold does not
exists). Conventionally we consider such curves without the endpoints.
We now give a convenient characterization of W s(x) and W u(x). The
construction closely follows [9, Section 4.11], and we refer the reader
to that section for additional details. For x ∈ M \ S−∞H , we denote
with Q−n(x) the connected component of the open set M\ S−nH that
contains x. Naturally, Q−n(x) ⊃ Q−(n+1)(x) for any n. Moreover

Q−n(x) is compact for any n sufficiently large, possibly depending on

x.25 Let W̃ u(x) =
⋂
n≥1Q−n(x). Using compactness of Q−n(x) and

Lemma 4.23 one can show that W̃ u(x) is a compact unstable curve.

It then follows that W u(x) is equal to W̃ u(x) minus the endpoints. A
completely similar construction can be carried over for W s(x).

If W u(x) = ∅ we define ru(x) = 0. Otherwise, x subdivides W u(x)
in two subcurves; we denote with ru(x) the α-length of the shortest of
such subcurves. Define rs(x) similarly.

We now obtain lower bounds for rs and ru. In order to do so we
introduce some notation. Given x ∈ M, define the functions E± :
M→ R so that if x ∈ Hk ∩ D±ν , then E±(x) = (ν + 1)(k2 + 1). More
precisely

E±(x) =
∑
k

(k2 + 1)χHk∩D±R
+
∑
k,ν

(k2 + 1)(ν + 1)χHk∩D±ν (x),

where χ denotes the indicator function of the set written as its sub-
script.

25 This holds since, for n sufficiently large (e.g. n > N̂(x) + N̂(F N̂(x)(x))), the

set F N̂(x)Qn(x) is contained in some fundamental domain Dm, and such sets are
bounded (see e.g. (4.10)).
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Lemma 7.6. E± controls the contraction and expansion of stable and
unstable vectors by dF as follows:

C−1E−(Fx) <
‖dFvu‖
‖vu‖

< CE−(Fx) ∀x ∈M \ S+, vu ∈ Cux

(7.12a)

C−1E+(F−1x) <
‖dF−1vs‖
‖vs‖

< CE+(F−1x) ∀x ∈M \ S−, vs ∈ Csx.

(7.12b)

Proof. Of course it suffices to show(7.12a), then (7.12b) follows from
the properties of the involution. If Fx ∈ D−R , then the lower bound
follows from (4.25) and the upper bound follows from (4.29) and Corol-
lary 4.11(a). On the other hand, suppose Fx 6∈ D−R . If w is large, then
our estimates follow from Corollary 4.11 and (4.29). If w is small,
Lemma 4.8(b) and (4.29) yield the desired estimate. �

Given x ∈M and n ∈ Z, we denote with ds
α(x,SnH) (resp. du

α(x,SnH))
the length (in the α-metric) of the shortest26 stable (resp. unstable)
curve which connects x with SnH.

For x ∈ M, let Λu
n(x) be the minimal expansion of unstable vectors

by dFn|x. Similarly, let Λs
n(x) be the minimal expansion of stable

vectors by dF−n|x. Notice that there exists Λ > 0: so that for any
n > 0 and x ∈M

Λs
n(x) > Λ, Λu

n(x) > Λ.(7.13)

Moreover, by definition, for any 0 < m < n:

Λu
n(x) ≥ Λu

m(x)Λu
n−m(Fmx) Λs

n(x) ≥ Λs
m(x)Λs

n−m(F−mx).

Hence by (7.12), there exists c > 0 so that for any n ≥ 1

Λu
n(x) ≥ cE−(Fx)Λu

n−1(Fx),(7.14a)

Λs
n(x) ≥ cE+(F−1x)Λs

n−1(F−1x).(7.14b)

Lemma 7.7. For any L > 0 there exists a constant c > 0 such that

rs(x) ≥ min{L, c inf
n>0

Λs
n(Fnx)dsα(Fnx,S−1

H )},

ru(x) ≥ min{L, c inf
n>0

Λu
n(F−nx)duα(F−nx,S1

H)}.

Proof. The proof of the lemma is a combination of the arguments given
in [9, Lemma 4.67, (4.61), Exercise 5.19 and (5.58)].

26 The existence of such a curve follows from the fact that the stable (resp.
unstable) cone is closed and that the singularity set is closed.
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Let us prove the statement for ru (the statement for rs follows as
usual by the properties of the involution). We may further assume
that x ∈ M \ S−∞H (otherwise the right hand side of the inequality
is 0 and the statement holds trivially). As before, for any n, we let
Q−n(x) be the connected component of M\ S−nH containing the point
x; clearly Qn(F−nx) = F−n(Q−n(x)) is the connected component of
M\ SnH containing the point F−nx.

Let n∗ be so that Q−n∗(x) is compact. Choose w∗ so that Q−n∗(x) ⊂
{w ≤ w∗}. Let us now fix ε > 0 and choose n > n∗ so that Q−n(x) is
contained in an Euclidean ε/w∗-neighborhood of W u(x).

By construction F−nW u(x) ⊂ Qn(F−nx). Let W ′
−n be an arbitrary

continuation as a mature unstable curve of F−nW u(x) to ∂Qn(F−nx).

We further assume that W ′
−n is K̂-admissible27. Then W ′ = Fn(W ′

−n)
is an unstable continuation of W u(x) that terminates on ∂Q−n(x). It is
divided by the point x into two subcurves; denote with W the shortest
one (in the α-metric). By our construction and (4.16b) we gather that
ru(x) ≥ |W |α − C#ε. Since ε is arbitrary, it suffices to show that

|W |α ≥ min{L, c inf
n>0

Λu
n(F−nx)du

α(F−nx,S1
H)}.

The above bound trivially holds if |W |α ≥ L. Let us thus assume
that |W |α < L and for 0 ≤ m ≤ n let W−m = F−mW . Since W−n
terminates on SnH, there exists m ∈ [1, n] so that W−m joins F−mx with
S1
H. We thus gather

|W |α =
|W |α
|W−m|α

|W−m|α ≥ C#Λu
m(F−mx)|W−m|α

≥ C#Λu
m(F−mx)du

α(F−mx,S1
H)

where we used distortion estimates obtained in Corollary 5.11. �

The statement we are about to prove below (Lemma 7.8) is the
analog of [9, Exercise 5.69], but there are some differences which are
due to two separate issues. First of all the statement of that exer-
cise is incorrect: the strategy presented in [9, Section 5.5] has a gap
and needs to be corrected (see [3] for a proposed solution). Secondly,
the argument would need a non-trivial adaptation to our specific case
because of the nature of our singularities (presence of corner points,
non-compactness). We thus proceed to give in detail the statement
and the proof of what is needed for our analysis. In order to simplify
our notation we denote, as usual, xn = Fnx.

27By Corollary 5.5, F−nW u(x) is K̂-admissible and we can choose our continu-
ation to satisfy this requirement
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Lemma 7.8. There exists a constant C > 0 so that

(a) for any mature unstable curve W ⊂ M, any n ≥ 2 and any
x ∈ W \ Sn:

Λs
n(xn)dsα(xn,S−1

H ) ≥ C min{Λs
n(xn)rW,n(x),(7.15a)

Λs
n−1(xn−1)r∗W,n−1(x),

Λs
n−2(xn−2)rW,n−2(x)}.

(b) for any unstable curve W ⊂ M that is the image of a mature
unstable curve and any x ∈ W \ S1:

Λs
1(x1)dsα(x1,S−1

H ) ≥ C min{Λs
1(x1)rW,1(x), r∗W (x), rW (x)4}.(7.15b)

Proof. Recall that S−1
H is a closed set (see Remark 5.1). In particular

ds
α(xn,S−1

H ) is attained as |V |α, where V is a stable curve which joins
xn to some point z ∈ S−1

H . By definition (see (5.1)) we have:

S−1
H = S ∪ F(S \ S+) ∪ S−.

Hence there are three possibilities:

(a) z ∈ S;
(b) z ∈ F(S \ S+);
(c) z ∈ S−.

We begin with case (a). By definition it holds that |V |α ≥ dα(xn,S).
Using (7.2) we thus conclude that ds

α(xn,S−1
H ) ≥ crW,n(x).

In cases (b) and (c) we consider V ′ = F−1V . Then V ′ is a weakly
homogeneous stable curve and, by (7.12):

|V |α ≥
c|V ′|α

E+(xn−1)
.

In case (b), V ′ links xn−1 to some point z′ ∈ S, therefore |V ′|α ≥
dα(xn−1,S) and using (7.14a) we gather that

Λs
n(xn)ds

α(xn,S−1
H ) ≥ cΛs

n−1(xn−1)dα(xn−1,S).

Using again (7.2) we thus conclude that

Λs
n(xn)ds

α(xn,S−1
H ) ≥ cΛs

n−1(xn−1)rW,n−1(x).

Finally, we consider case (c): then V ′ is a stable curve linking xn−1

to some28 point z′ ∈ S+. We consider two possibilities:

(c′) xn−1 ∈ D−R and z′ ∈ {0} × [0, h];
(c′′) otherwise.

28 Note that F−1 is undefined on S− so we cannot quite say that z′ = F−1z



86 JACOPO DE SIMOI AND DMITRY DOLGOPYAT

In case (c′), observe that since V ′ is a stable curve, it is increasing,
and the assumptions in (c′) imply that V ′ ⊂ D−R (see Lemma 3.6).
We have now to deal separately with the case n = 1 and n > 1. If
n > 1, consider V ′′ = F−1V ′. Observe that V ′′ ⊂ D+

R is a stable (once
again, increasing) curve, which joins xn−2 ∈ D+

R to z′′ ∈ {r = 1}. The
expansion of dF−1 along V ′ is bounded above29 by cE+(xn−2) (since
xn−2 ∈ D+

R and it is the lowest point on V ′′). We conclude that

|V ′|α ≥ c
|V ′′|α

E+(xn−2)
.

Hence, |V ′′|α ≥ dα(xn−2, {r = 1}). Now xn−2 cuts Wn−2(x) into two
subcurves; let W ′

n−2(x) denote the subcurve to the right of xn−2; then
by definition |W ′

n−2(x)| ≥ rW,n−2(x). Notice that W ′
n−2(x) ⊂ D+

R , thus
W ′
n−2(x) ∩ D−R = ∅; Corollary 4.11 then implies that we have uniform

transversality of W ′
n−2(x) with any vertical line, which allows to con-

clude that

dα(xn−2, {r = 1}) ≥ c|W ′
n−2(x)|α ≥ crW,n−2(x).

Hence in case (c′) and if n > 1:

Λs
n(xn)ds

α(xn,S−1
H ) ≥ CΛs

n−2(xn−2)rW,n−2(x)}.
Otherwise if n = 1, we need to modify the above argument as follows.
Applying Lemma 4.20 (and Remark 4.21) to the stable curve V ′ ⊂ D−R
we conclude that

|V ′|α ≥ c|V ′′|2α;

Then arguing as before (with Wn−2 replaced by F−1W , that is guar-
anteed to be a mature unstable curve by our assumption), we conclude
that |V ′′|α ≥ crF−1W (x−1). Applying once again Lemma 4.20 (and
Remark 4.21 to F−1W ), we conclude that rW (x) ≤ C#rF−1W (x−1)1/2,
from which we finally conclude that

rs(x) = |V ′|α ≥ CrW (x)4.

We now estimate |V ′|α in case (c′′). We claim that

|V ′|α ≥ C inf
N>0

N3/2d(xn−1,S+
(N)).(7.16)

The above holds trivially if z′ ∈ S+
(1). Otherwise, there exists ν > 1

so that z′ ∈ S+
ν . This implies that V ′ ⊂ D+

ν′ where either ν ′ = ν or
ν ′ = ν + 1. Since D+

ν′ is bounded if ν ′ > 1 (see Lemma 3.12(e)), V ′ lies

29 Remarkably, the geometry still allows us to obtain an upper bound on expan-
sion despite the fact that V ′′ is not, a priori, weakly homogeneous
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in a region where w is bounded and so the α-metric and the Euclidean
metric are equivalent.

Moreover, the angle between V ′ and S+
ν is bounded above by Cν−3/2

(see the proof of Lemma 3.9). Thus dα(xn−1,S+
ν ) ≤ Cν−3/2|V ′|α. Since

dα(xn−1,S+
(ν)) ≤ dα(xn−1,S+

ν ), we obtain (7.16).

By Lemma 3.2 S+
(N) is a union of curves compatible with the cone P.

Moreover, since we are in case (c′′), xn−1 6∈ D−R (and thus Wn−1(x) ∪
D−R = ∅). Hence by Corollary 4.11, Wn−1 is uniformly transversal to
any curve in P and we conclude that

dα(xn−1,S+
(N)) ≥ C#rWn−1(x)(xn−1,S+

(N)).

This yields

|V ′|α ≥ C inf
N>0

N3/2rWn−1(x)(xn−1,S+
(N)) = Cr∗W,n−1(x).

Therefore

Λs
n(xn)ds

α(xn,S−1
H ) ≥ CΛs

n−1(xn−1)r∗W,n−1(x)

concluding the proof. �

Using the two results bounds above it is possible to obtain lower
bounds on the length of stable (resp. unstable) manifolds passing through
most points on any given unstable (resp. stable) mature admissible
curve. This is done in the following corollary, which is the analog to [9,
Theorems 5.66–5.67, Section 5.12].

Corollary 7.9. (a) There exists C > 0 so that for any admissible
mature unstable curve W ⊂ M and ε > 0 with the property that for
every x ∈ W we have dα(Fx,S−1

H ) > Cε, then

LebW (rs(x) ≤ ε) < C#ε.

(a’) for any admissible mature unstable curve W ⊂ M that is the
image of a mature unstable curve and any ε > 0:

LebW (rs(x) ≤ ε) < C#ε
1/4.

(b) for any η > 0 there exists k > 0 so that for any admissible
mature unstable curve W ⊂ M and ε > 0 with the property that for
every x ∈ W we have dα(Fnx,S−1

H ) > ε for any 0 ≤ n ≤ N̂k(x); then

(7.17) LebW (rs(x) ≤ ε) ≤ ηε.

(c) There exists C > 0 so that for any admissible mature stable curve
W ⊂ M and ε > 0 with the property that for every x ∈ W we have
dα(F−1x,S1

H) > Cε, then

LebW (ru(x) ≤ ε) < C#ε.
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(c’) for any admissible mature stable curve W ⊂M that is the pre-
image of a mature stable curve and any ε > 0:

LebW (ru(x) ≤ ε) < C#ε
1/4.

(d) for any η > 0 there exists k > 0 so that for any admissible mature
stable curve W ⊂M and ε > 0 with the property that for every x ∈ W
we have dα(F−nx,S1

H) > ε, for any N̂−k(x) < n ≤ 0; then

LebW (ru(x) ≤ ε) ≤ ηε.

Proof. We prove parts (a), (a’) and (b). Parts (c), (c’) and (d) follow
by identical arguments by considering F−1. Combining Lemmata 7.8
and 7.7 (with L = 1) with the estimate rW,n(x) ≥ r∗W,n(x) we obtain

rs(x) ≥ min{1, cΛs
1(Fx)ds

α(Fx,S−1
H ), C inf

n≥0
Λs
n(Fnx)r∗W,n(x)}.(7.18)

Define C = c−1Λ−1 (recall (7.13)) to ensure that if dα(Fx,S−1
H ) > Cε,

then cΛs
1(Fx)ds

α(Fx,S−1
H ) > ε. Then, under the assumptions of (a),

assuming ε < 1, the only possibility for rs(x) ≤ ε is that the third
term in the right hand side of the above expression is small. In case of
(a’), we can apply Lemma 7.8(b) to bound the second term above and
conclude that:

rs(x) ≥ min{1, crW (x)4, C inf
n≥0

Λs
n(Fnx)r∗W,n(x)}.

Using (7.1), we then conclude that

LebW (rW (x) < Cε1/4) ≤ C#ε
1/4.

We are hence left to estimate the measure of points where the third
term of (7.18) is small. Observe that if N̂m is not defined on some
x ∈ W for some m, then x ∈ S∞. Since W ∩ S∞ is countable, the
set of such x’s forms a zero Lebesgue measure set on W and can be
neglected. We can thus assume that N̂m(x) is defined for any m and
we can write, recalling the definition of Λ in (4.27):

inf
n≥0

Λs
n(Fnx)r∗W,n(x) = inf

m≥0
inf

N̂m(x)≤n<N̂m+1(x)
Λs
n(Fnx)r∗W,n(x)

≥ inf
m≥0

Λs
N̂m(x)

(F N̂m(x)x) min
N̂m(x)≤n<N̂m+1(x)

Λs
n−N̂m(x)

(Fnx)r∗W,n(x)

≥ C# inf
m≥0

Λm min
N̂m(x)≤n<N̂m+1(x)

Cr∗W,n(x) ≥ C# inf
m≥0

Λmr̄∗
W,N̂m(x)

(x).

Hence:

LebW (inf
n≥0

Λs
n(Fnx)r∗W,n(x) < ε) ≤

∑
m≥0

LebW (r̄∗
W,N̂m(x)

(x) < Λ−mε).
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Using Lemma 7.5 and recalling the definition of r̂W,m (see (7.10)) we
obtain∑

m≥0

LebW (r̄∗
W,N̂m(x)

(x) < Λ−mε) ≤
∑
m≥0

LebW (r̂W,m(x) < CΛ−mε).

Then by the Growth Lemma 7.2 we can estimate

LebW (r̂W,m(x) < CΛ̂−mε) ≤ CΛ−mεLebWW + CθmΛ−mε.

Summing over m and collecting all the above estimates we get

LebW (inf
n≥0

Λs
n(Fnx)r∗W,n(x) < ε) ≤ Cε.

This proves items (a) and (a’).
The proof of item (b) is similar to the proof of item (a). Once again

we can neglect the points x ∈ W where N̂m is not defined for some m.
Next,

rs(x) ≥ min{1, min
1≤n<N̂k(x)

cΛs
n(Fnx)ds

α(Fnx,S−1
H ),(7.19)

C inf
n≥N̂k(x)

Λs
n(Fnx)r∗W,n(x)}.

Choose k so that C#Λk < η. The assumption of part (b) implies that

min
1≤n<N̂k(x)

cΛs
n(Fnx)ds

α(Fnx,S−1
H ) ≥ ε

so only the last term in (7.19) could be small. On the other hand
arguing as in part (a) we gather

LebW

(
inf

n≥N̂k(x)
Λs
n(Fnx)r∗W,n(x) < ε

)
≤
∑
m≥k

LebW (r̂W,m(x) < CΛ−mε)

≤ C#Λ−kε.

completing the proof. �

7.3. Absolute continuity of the holonomy map. In this subsec-
tion we discuss regularity properties of the holonomy map. LetW1,W2 ⊂
M̂ be two mature admissible unstable curves which are close to each
other. More precisely, fix a small number d > 0. Let H be the holo-
nomy map defined by (5.14) and recall the sets Ω1,Ω2 defined by (5.13).
We assume that

sup
x1∈Ω1

dα(x1,Hx1) ≤ d.(7.20)

Recall moreover the definition of unstable Jacobian (5.15) and that
LebW denotes the Lebesgue measure induced by the α-metric.
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Proposition 7.10. (Absolute Continuity-1) For φ ∈ L1(W1)∫
Ω1

φ(x1)dLebW1(x1) =

∫
Ω2

φ(H−1x2)J(H−1x2)dLebW2(x2).

Corollary 7.11. If A ⊂ Ω1 has zero LebW1-measure, then LebW2(HA) =
0.

Proof. Let B = HA and assume by contradiction that mesB > 0.
Then since J is bounded from below30, Proposition 7.10 implies that

LebW1A = LebW1(H−1B) =

∫
B

J(H−1x2)dLebW2(x2) > 0. �

Proof of Proposition 7.10. For the ease of notation, we will denote with
dx the integration with respect to dLebW1(x) (or dLebW2(x), as will be
clear from the context). First of all, we can assume that φ ∈ C(W1);
the general case follows by the density of C(W1) in L1(W1). Moreover,
by the usual linearity arguments, we can further assume that φ is non-
negative.

Choose ε > 0 arbitrarily and let n > 0 large to be specified later. Let
{Wj1} denote the set of shortened H-components31 of F̂nW1. Recall in

particular that |Wj1|α < 1. For any j, let Vj1 = F̂−nWj1 and choose
x̄j1 ∈ Vj1. Observe that |Vj1|α < Λ−n by (4.27). In particular, by
uniform continuity of φ, if n is sufficiently large32 (depending on ε)
then ∫

Ω1

φ(x1)dx1 =
∑
j

∫
Ω1∩Vj1

φ(x1)dx1

=
∑
j

φ(x̄j1)LebW1(Vj1 ∩ Ω1) +O(ε).

By the Growth Lemma 7.2, given ε > 0 we can find η > 0 such that∑
j

φ(x̄j1)LebW1(Vj1 ∩ Ω1) =
∗∑
j

φ(x̄j1)LebW1(Vj1 ∩ Ω1) +O(ε),

where
∑∗ denotes the sum over components with |Wj1|α ≥ η.

30 Lemma 5.12 implies a uniform upper bound, and exchanging the roles of W1

and W2 yields the desired lower bound
31 Recall that shortened H-components were defined in the proof of the Growth

Lemma 7.2
32 Recall that admissible curves have bounded Euclidean length, hence they have

bounded α-length by Proposition 4.15(a)
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By using Lebesgue Density Theorem and Severini–Egoroff Theorem,
we can conclude that, for large enough n > 0

∗∑
φ(x̄j1)LebW1(Vj1 ∩ Ω1) =

∗∗∑
φ(x̄j1)LebW1(Vj1 ∩ Ω1) +O(ε)

where the sum in
∑∗∗ is over the components satisfying

(7.21) |Wj1|α ≥ η and LebW1(Vj1 ∩ Ω1) ≥ (1− ε)|Vj1|α.
Hence ∫

Ω1

φ(x)dx =
∗∗∑
φ(x̄j)

∣∣V j1

∣∣
α

+O(ε).(7.22)

Observe that the Distortion Estimates (Corollary (5.11)) and the
fact that |Wj1|α < 1 imply that for some C > 1 and any j so that Wj1

satisfies (7.21):

LebWj1
(F̂nΩ1) ≥ (1− Cε)|Wj1|α.(7.23)

Let us fix Wj1. We want to show that there exists Wj2 ⊂ F̂nW2 which

is sufficiently long and so that LebWj2
(F̂nΩ2) ' LebWj1

(F̂nΩ1).
Recall the definition of Q(x) given in Section 7.2. Let x1 ∈ Vj1 ∩ Ω1

and y1 = F̂nx1 ∈ Wj1: observe that, by definition, Wj1 ⊂ Q−n(y1) and
Vj1 ⊂ Qn(x1).

Let x2 = Hx1 ∈ W2. Then x1 and x2 are connected by a stable
manifold, which by definition cannot cross the boundary of Qn. We
conclude that x2 ∈ Qn(x1), which in turn implies that W2 ∩Qn(x1) is
non-empty. Transversality of unstable curves and the boundary of Qn

(composed of stable curves) then imply that W2∩Qn(x1) is connected,

and since F̂n is smooth on Qn(x1), we conclude that F̂n(W2 ∩Qn(x1))

is an H-component of F̂nW2, that we denote with W̃j2. Let Ṽj2 =

F̂−nW̃j2. Since x1 is arbitrary, we conclude thatH(Ω1∩Vj1) ⊂ Ω2∩Ṽj2.

In other words, any shortened H-component of F̂nW1 cannot be
linked with stable manifolds to more than one H-component of F̂nW2.
Now observe that there exists two points a1, b1 ∈ Wj1 ∩ F̂nΩ1 that lie
less than Cε|Wj1|α away from each of the boundary points of Wj1. Oth-

erwise, F̂nΩ1 would miss an interval of α-length larger than Cε|Wj1|α
in Wj1, which is impossible by (7.23). Let W̄j1 be the subcurve of Wj1

bounded by a1 and b1; then the triangle inequality yields:

|W̄j1|α ≥ (1− 2Cε)|Wj1|α.(7.24)

Recall that a1 and b1 belong to Wj1 ∩ F̂nΩ1. Hence we can define

a2, b2 ∈ F̂nΩ2 ∩ W̃j2 so that a2 = F̂nHF̂−na1 and b2 = F̂nHF̂−nb1. In
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particular dα(a1, a2) ≤ dΛ−n and dα(b1, b2) ≤ dΛ−n. Let W̄j2 denote

the subcurve of W̃j2 bounded by a2 and b2. The triangle inequality
yields

|W̄j1|α − 2dΛ−n ≤ |W̄j2|α = dW̃j2
α (a2, b2) ≤ |W̄j1|α + 2dΛ−n

Since |Wj1|α > (1− 2Cε)η, we can assume n to be so large that

(1− Cε)|W̄j1|α ≤ |W̄j2|α ≤ (1 + Cε)|W̄j1|α.

We now proceed to show that F̂nΩ2 ∩Wj2 is large. More precisely we
will show that

LebW̄j2
(F̂nΩ2) ≥ (1− Cε1/4)|W̄j2|α.(7.25)

We want to use Corollary 7.9 to show that there are many sufficiently
long stable manifolds passing through Wj2 and we need to show that
any sufficiently long stable manifold will cross Wj1. In order to prove
the latter statement, we argue as follows. First of all, combining (7.23)
and (7.24) we conclude that there exists C̄ (for instance taking C̄ = 6C
would do), so that

LebW̄j1
(F̂nΩ1) > (1− C̄ε)|W̄j1|α

The above estimate implies that there exist z
(1)
1 , · · · , z(N)

1 ∈ W̄j1 so

that33 d
W̄j1
α (zi, zi+1) < C̄ε|W̄j1|α. Let z

(k)
2 = F̂nHF̂−nz(k)

1 . Our previ-
ous arguments, and the fact that stable manifolds cannot cross each

other imply that z
(k)
2 ∈ W̄j2 and, moreover, dα(z

(i)
1 , z

(i)
2 ) < dΛ−n. Once

again, the triangle inequality shows, choosing a larger n if needed, that

d
W̄j2
α (z

(i)
2 , z

(i+1)
2 ) < 2̄Cε|W̄j2|α. Let W

(i)
j1 (resp. W

(i)
j2 ) be the subcurves

in which the points {z(i)
1 } (resp. {z(i)

2 }) partition W̄j1 (resp. W̄j2), and

for any i, define the box B
(i)
j as the region bounded by W

(i)
j1 , W

(i)
j2

and the two stable manifolds connecting the corresponding boundary
points. We claim that:

diamαB
(i)
j ≤ 5C̄ε|W̄j1|;(7.26)

In fact by the triangle inequality, the α-diameter of each cell is bounded
above by the sum of the lengths of the four boundary curves; our
previous estimates imply that

|W (i)
j1 |α + |W (i)

j2 |α ≤ 4C̄ε|W̄j1|;
Since the length of the stable manifolds can be made arbitrarily small
by taking n sufficiently large, we conclude that (7.26) holds.

33 Otherwise, F̂nΩ1 would miss an interval of length larger than C̄ε|W̄j1|
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On the other hand, (7.26) implies that for any z ∈ W̄j2, if rs(z) ≥
5C̄ε|Wj1|α, then W s(z) will necessarily intersect W̄j1 nontrivially (once

again, stable manifolds cannot intersect each other) and thus z ∈ F̂nΩ2.
We now use Corollary 7.9(a’) and the fact that |Wj2|α ≥ η to conclude
that

LebWj2
(rs(z) ≤ 5C̄ε|Wj2|α) < C#ε

1/4|Wj2|α.
Hence

LebWj2
(z̃ ∈ W j2 : W s(z̃) ∩W j1 6= ∅) ≥ (1− C#ε

1/4)|W j2|α,
which is (7.25) Therefore

∗∗∑
φ(x̄j)|V j1|α =

∗∗∑
φ(x̄j)|W j1|α

[
n−1∏
l=0

JF̂ lW1
F̂(F̂ jx̄j)(F̂ lx̄j)

]−1

+O(ε)

=
∗∗∑
φ(x̄j)|W j2|α

[
n−1∏
l=0

JF̂ lW1
F̂(F̂ jx̄j)(F̂ lx̄j)

]−1

+O(ε)

=
∗∗∑
φ(x̄j)|V j2|α

[
n−1∏
l=0

JF̂ lW2
F̂(F̂ jHx̄j)(F̂ lHx̄j)

JF̂ lW1
F̂(F̂ jx̄j)(F̂ lx̄j)

]
+O(ε)

=
∗∗∑
φ(x̄j)|V j2|α J(x̄j) +O(ε) +O(θn).

where the last step relies on Lemma 5.12(a).
Then the Bounded Distortion Corollary 5.11 and (7.25) yield:
∗∗∑
|V 2j|φ(x̄j)J(x̄j) ≤

∗∗∑
mes(V j2 ∩ Ω2)φ(x̄j)J(x̄j) +O(ε1/4)

≤
∑
j

mes(V2j ∩ Ω2)φ(x̄j)J(x̄j) +O(ε1/4).

Accordingly, assuming n sufficiently big so that θn < ε1/4, and using
(7.22) we obtain∫

Ω1

φ(x)dx ≤
∑
j

mes(Vj2 ∩ Ω2)φ(x̄j)J(x̄j) +O(ε1/4).

Since ε > 0 is arbitrary,∫
Ω1

φ(x)dx ≤
∫

Ω2

φ(H−1y)J(H−1y)dy.

By symmetry∫
Ω2

φ(H−1y)J(H−1y)dy ≤
∫

Ω1

φ(H(H−1x))
J(H(H−1x))

J(x)
dx =

∫
Ω1

φ(x)dx
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and Proposition 7.10 follows. �

7.4. Absolute continuity of stable lamination. Consider a system
of local coordinates (a, b) in a small domain in the phase space such
that the curves {a = const} are unstable. Define the set

Ra1,a2 = {x : a1 ≤ a(x) ≤ a2 and

W s(x) ∩ {a = a1} 6= ∅, W s(x) ∩ {a = a2} 6= ∅}.
Consider another coordinate system (u, s) on Ra1,a2 such that

x(u, s) = W s(x(a1, u)) ∩ {a = s}.
Define the measure dν = duds on Ra1,a2 . For i = 1, 2, let34 Ωi =

Ra1,a2 ∩ {a = ai}, and define the sets:

Zu1,u2 = {x ∈ Ra1,a2 : u1 ≤ u(x) ≤ u2},
Zu1,u2;s1,s2 = {x ∈ Ra1,a2 : u1 ≤ u(x) ≤ u2, s1 ≤ s(x) ≤ s2},
Zu1,u2;s = {x ∈ Ra1,a2 : u1 ≤ u(x) ≤ u2, s(x) = s},
Zu;s1,s2 = {x ∈ Ra1,a2 : s1 ≤ s(x) ≤ s2, u(x) = u}.

Proposition 7.12. (Absolute Continuity-2) The measure ν is
equivalent to the restriction of the Lebesgue measure on Ra1,a2 .

Proof. Note that all smooth measures are equivalent, so below Leb will
denote the measure defined by dLeb = da db. Note that

ν(Zu1,u2;s1,s2) = νZu1,u2;a1
([u1, u2] ∩ Ω1)(s2 − s1),

where ν∗ is the restriction of the measure ν on the set identified in the
subscript. On the other hand, by Proposition 7.10, we have

Leb(Zu1,u2;s1,s2) =

∫ s2

s1

Leb{a=s}(Zu1,u2;s)ds

=

∫ s2

s1

∫
[u1,u2]∩Ω1

JHs(x(a1, u))duds,

where JHs is the Jacobian of the holonomy map Hs : Ω1 → Zu1,u2;s.
Since J(Hs) is uniformly bounded from above and below, there is a

constant K > 1 such that for each [u1, u2], [s1, s2] we have

K−1 ≤ ν(Zu1,u2;s1,s2)

Leb(Zu1,u2;s1,s2)
≤ K,

proving the proposition. �

Corollary 7.13. The following are equivalent

34Note that Ω1 = {x ∈ W1 : W s(x) ∩ W2 6= ∅} where Wj = {a(x) = aj}.
Therefore the notation Ω is consistent with (5.13).
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(a) Leb(A) = 0
(b) for almost every x, mes(A ∩W s(x)) = 0.
(c) for almost every x, mes(A ∩W u(x)) = 0.

Proof. We prove the equivalence of (a) and (b). The equivalence of (a)
and (c) follows from analogous arguments.

It suffices to prove the result under the assumption that A ⊂ Ra1,a2

for some a1, a2. But then

Leb(A) = 0⇔ ν(A) = 0⇔ for a.e. (u, s) ∈ Ω1×[a1, a2] mes(A∩Zu,a1,a2) = 0

⇔ for a.e. x ∈ Ra1,a2 mes(A ∩W s(x)) = 0. �

8. Ergodicity

Proof of the Main Theorem. Fix a large number R. Let M̂R ⊂ M̂ be
a region such that

• M̂ ∩ {w < R} ⊂ M̂R;

• M̂ ∩ {w < 2R} ⊃ M̂R

• ∂M̂R consists of curves in Ŝ−.

By Theorem 4.7 the first return map F̃R : M̂R → M̂R is well defined

so it is enough to show that F̃R is ergodic for every R sufficiently large.

Let R0 be the set of points x ∈ M̂R such that for any continuous
function A, the limits

Ā+(x) = lim
n→∞

1

n

n−1∑
j=0

A(F̃ jRx), Ā−(x) = lim
n→∞

1

n

n−1∑
j=0

A(F̃−jR x)

exist and are equal. We shall call the common limit Ā(x). By Birkhoff

Ergodic Theorem, the set R0 has full Lebesgue measure in M̂R. For
j > 0 define

Rj(x) = {x ∈ Rj−1 : mes(W u(x) \ Rj−1) = mes(W s(x) \ Rj−1) = 0}.

By Corollary 7.13, Leb(Rc
j) = 0 for all j > 0. Note that since ∂M̂R is

a union of curves in Ŝ−, (un)stable manifolds for F̃R are given by the

intersection of (un)stable manifolds35 for F̂ with M̂R.

We now define the following equivalence relation: for x1, x2 ∈ M̂R,
we let x1 ∼ x2 if and only if Ā(x1) = Ā(x2) for all continuous functions

A on M̂R. If x ∈ M̂R, we denote with Σ(x) the equivalence class of

35 As a matter of fact, unstable manifolds are indeed the same, but stable man-

ifolds might get truncated if they cross ∂M̂R
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x. To prove that F̃R is ergodic it suffices to show that there exists an

equivalence class of full measure in M̂R.

For K > 0, let Q be a connected component of M̂ \ (ŜKH ∪ Ŝ−KH ).

Observe that by construction, both F̂K and F̂−K are continuous on Q;
moreover, for any −K ≤ k ≤ K, we have that N̂k is a constant function
on Q and for any N̂−K ≤ n ≤ N̂K , the image FnQ is contained in a
single homogeneity strip. We call Q a homogeneous K-cell. Observe

that, by definition, if Q is a homogeneous K-cell and Q∩M̂R 6= ∅, then

necessarily Q ⊂ M̂R. Moreover, since M̂R is compact, the Euclidean
length and α-length are equivalent; we will use Euclidean length (and
distance) for the rest of this section.

Since w is bounded on M̂R, there is uniform transversality between
the mature stable and mature unstable cones (recall (4.15)). In partic-
ular, for any R > 0, there exists L > 0 so that the following holds: for

any x, x′ ∈ M̂R, let W be a mature stable curve passing through x and
W ′ a mature unstable curve passing through x′. If rW (x) > Ld(x, x′)
and rW ′(x

′) > Ld(x, x′), then W ∩W ′ 6= ∅.
Observe that for any homogeneous K-cell Q, x ∈ Q and N̂−K(x) <

n < N̂K(x):

d(Fnx,Fn∂Q) ≤ d(Fnx,S1
H),

d(Fnx,Fn∂Q) ≤ d(Fnx,S−1
H )

In fact if e.g. the first inequality did not hold, FnQ would intersect
non trivially S1

H, but this means that either F would not be continuous
on FnQ, or that Fn+1Q intersects two homogeneity strips. Neither of
these possibilities is allowed by our construction.

Lemma 8.1 (Local Ergodicity). There exists K > 0 (depending on R)

such that any homogeneous K-cell Q ⊂ M̂R is contained (mod 0) in a
single equivalence class.

Proof. Let us fix a K-component Q and let

d(K)(x, ∂Q) = min
N̂−K(x)<n<N̂K(x)

d(Fnx,Fn∂Q).

Fix a small δ > 0 to be specified later and define

Qδ = {x ∈ Q : d(k)(x, ∂Q) > δ},

Observe that Qδ 6= ∅ provided that δ is sufficiently small and that
Leb(Q \Qδ)→ 0 as δ → 0. Then for any ε > 0 define:

Rε = {x ∈ R2 : ru(x) ≥ ε, rs(x) ≥ ε}.
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We claim that there exists C > 0 so that for any δ > 0 and sufficiently
small ε > 0,

Leb(Qδ \ Rε) < Cε.(8.1)

In fact, assume that ε > 0 is so small (relative to δ) that for any
x ∈ Qδ we have dα(Fx,S−1

H ) > Cε (where C is the constant given by
Corollary 7.9).

Let us foliate Qδ with mature admissible unstable curves; for each
such curve W , Corollary 7.9(a) implies that

LebW (rs(x) < ε) < C#ε.

Integrating over the curves, we get that Leb(Qδ \ {rs(x) < ε}) < C#ε.
Similarly, foliating with mature admissible stable curves and apply-
ing Corollary 7.9(c), we obtain an analogous estimate for ru, which
yields (8.1).

Lemma 8.2. For any small η̄ > 0, there exists K > 0 and ε0 > 0 such
that for any 0 < ε < ε0, any K-component Q:

(a) if x ∈ Qδ then

Leb(B(x, ε) ∩RLε)

Leb(B(x, ε))
> 1− η̄;

(b) If x ∈ RLε ∩Qδ

Leb(B(x, ε) ∩ Σ(x))

Leb(B(x, ε))
> 1− η̄.

Proof. To prove part (a), fix η to be specified later and let K be the k
given by Corollary 7.9(b), with the above choice of η. Let x ∈ Qδ; by
choosing ε0 sufficiently small (depending on δ), we can guarantee that
any point x′ ∈ B(x, ε) satisfies36 dα(Fnx′,S−1

H ) > Lε. Foliate B(x, ε)
by mature admissible unstable curves and disintegrate Leb|B(x,ε) on
such unstable curves. Then Corollary 7.9(b) implies that on any such
unstable curve W

LebW (rs(x) ≤ Lε) ≤ ηLε.

Integrating over all unstable curves we conclude that

Leb(B(x, ε) ∩ {rs(x) < Lε}) ≤ ηLε2.

By foliating with mature admissible stable curves and applying Corol-
lary 7.9(d), we conclude the corresponding statement for ru. Collecting

36 Recall that the α-metric and the Euclidean metric are equivalent
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these two estimates we gather:

Leb(B(x, ε) ∩RLε)

Leb(B(x, ε))
> 1− 2Lη

π
.

Choosing a suitable η, we conclude the proof of item (a).
To prove part (b), observe that by definition of L we are guaranteed

that if x′ ∈ B(x, ε) and x, x′ ∈ RLε, then x′ ∈ Σ(x). Hence B(x, ε) ∩
Σ(x) ⊃ B(x, ε) ∩RLε, and item (b) follows from item (a). �

Take K so that the above lemma holds with η̄ = 1
100

. Then for any

x ∈ RLε ∩Qδ we have

Leb(Σ(x) ∩B(x, ε))

Leb(B(x, ε))
≥ 99

100
.

Assume now that

(8.2) x1, x2 ∈ RLε ∩Qδ and d(x1, x2) ≤ ε

100
.

Elementary geometry implies that

Leb(B(x1, ε) ∩B(x2, ε))

Leb(B(x1, ε))
>

1

2
.

Thus (B(x1, ε)∩Σ(x1))∩ (B(x2, ε)∩Σ(x2)) fills at least 25% of Bε(x1).
In particular, mes(Σ(x1) ∩ Σ(x2)) > 0. Therefore (8.2) implies that
x1 ∼ x2.

Next, given arbitrary x1, x2 ∈ RLε ∩ Qδ, Lemma 8.2(a) allows to
construct a chain of points

z1, z2, · · · , zN ∈ RLε ∩Qδ

such that z1 = x1, zN = x2 and d(zj, zj+1) < ε/100. It follows that any
x1, x2 ∈ RLε∩Qδ are equivalent. Then since ε can be taken arbitrarily
small, (8.1) implies that almost every x1, x2 ∈ Qδ are equivalent. By
the same token, since δ can be taken arbitrary small it follows that Q
contains an equivalence class of full measure. �

The above lemma proves that for any R > 0 there exists K > 0 and

a full-measure set E ⊂ M̂R such that each equivalence class in E is a
union of K-components (mod 0).

We now prove that E consists of a single equivalence class. Let Ê ⊂
E be an equivalence class; of course F̃RÊ = Ê. Moreover there exists
Ê∗ which is a union of homogeneous K-cells so that Leb(Ê∗ \ Ê) = 0.

Then, consider F̃±2(K+1)
R Ê∗; observe that the boundary ∂F̃2(K+1)

R Ê∗

consist of curves in ∂M̂R and unstable curves, whereas ∂F̃−2(K+1)
R Ê∗

consists of curves in ∂M̂R and stable curves. By invariance of Ê, the



DISPERSING FERMI–ULAM MODELS 99

sets F̃±2(K+1)
R Ê∗ are equal (mod 0). We conclude that the boundaries

are necessarily contained in ∂M̂R. Since M̂R is connected, we conclude

that Ê∗ = M̂R. �

Remark 8.3. Another approach of deducing ergodicity from local er-
godicity (Lemma 8.1) is due to Chernov and Sinai [14]. If there is
more than one equivalence class there would be a curve Γ which is an

arc of a discontinuity curve for some F̃ j with |j| ≤ K which separates
two classes E1 and E2. In particular, there is a point x ∈ Γ and a
small neighborhood U of x which consists of only two components of
E: E1 and E2 which lie on different sides of Γ. Suppose for example
that j ≤ 0 so that, by Lemma 3.2, Γ is an unstable curve. Then we

can assume (after possibly changing x), that F̃K is continuous near x,
where K is from Lemma 8.2. For l ∈ {1, 2}, let Σl =

⋃
y∈ElW

s(y).
Arguing as in the proof of Lemma 8.2 we conclude that Σ1 ∩ Σ2 has
positive measure. This shows that in fact, E1 and E2 are equivalent,

giving a contradiction. Hence E consists of a single class and so F̃R is
indeed ergodic.

9. Open problems

In this section we present several possible directions of further re-
search.

(I) In this paper we showed ergodicity of a class of piecewise smooth
Fermi–Ulam models. In principle we believe that this result can be gen-
eralized to a broader, and more natural, class of wall motions. More
precisely, it should be possible to adapt our arguments to treat motions
that satisfy the same convexity conditions in the domains of smooth-
ness, but with more than one non-smoothness points, provided that
all of them are convex (i.e. the derivative has a positive jump). It is
more delicate to understand the behavior of Fermi–Ulam Models with
non-convex singularity points, since in principle Proposition 6.5 might
fail in this case (similarly to what happens for dispersing billiards with
corner points and infinite horizon, see [5]). Indeed our proof of Propo-
sition 6.5 relies on the global structure of singularities established in
Section 3.2 and the arguments of the subsection rely on convexity of
singular points at several places. Moreover, the results of [17] would
also need to be generalized to prove, e.g. recurrence for systems with
non-convex singularity points. Thus, further non-trivial investigation
is required to understand the case of non-convex singular points.
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(II) Corollary 1.2 says that almost every orbit is oscillatory. Thus,
for a typical orbit, the energy takes both large and small values at
different moments of time. It is of interest to understand both rate of
growth of energy and statistics of returns similarly to what is done in
[8, 24].

(III) In Fermi–Ulam models the point mass keeps colliding with the
moving wall due to the presence of the fixed wall (a hard core con-
straint). It is possible to ensure the recollisions via a soft potential.
Some results about large energy dynamics of particles in soft potentials
are obtained in [16, 19, 38]. It is assumed in the above cited papers that
the motion of the wall is smooth. One could also consider piecewise
smooth wall motions where ergodicity seems likely under appropriate
conditions.

(IV) This paper deals with the case where the velocity of the wall
has a jump. From the physical point of view it is natural to consider
also the case where acceleration has jump, but this seems much more
difficult since the energy change is much slower for large energies in
this case.

Appendix A. Regularity at infinity

In this appendix we show that most Fermi–Ulam Models are super-
regular at infinity.

Lemma A.1. For each k the set of ∆ such that Kk(∆) > 3 is discrete.

In order to explain the proof more clearly, we first introduce a con-
venient change of coordinates. Let

ξ = τ − 1/2, η = I − τ + 1/2.

If x ∈ D̂n0,··· ,nk−1
we can express the orbit {xl = F̂ lx}0≤l<k in (ξ, η)

coordinates as:

ξl+1 = −(ηl − nl), ηl+1 = κ(ηl − nl) + ξl + nl

where κ = (2 − ∆) > 2. Let us define η̃l = ηl − nl ∈ [−1/2, 1/2] and
the reduced itineraries νl = nl+1 − nl. Then

ξl+1 = −η̃l, η̃l+1 = κη̃l + ξl − νl.(A.1)

Iterating, we obtain

η̃l = Pl(κ)η̃0 + Pl−1(κ)ξ0 −
l−1∑
j=0

Pl−j−1(κ)νj(A.2)
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where Pl satisfies the recursive relation Pl+2 = κPl+1−Pl, with P0(κ) =
1 and P1(κ) = κ. In particular, Pl is a monic37 polynomial of degree l.

(A.1) can be rewritten as follows

η̃l = −ξl+1 ξl = η̃l+1 − κη̃l + νl = κξl+1 + η̃l+1 + νl(A.3)

Comparing (A.1) and (A.3) we obtain the following analogue of (A.2)

ξ0 = Pl(κ)ξl + Pl−1(κ)η̃l +
l−1∑
j=0

Pj(κ)νj.(A.4)

Proof of Lemma A.1. Assume that Kk(∆, x) > 3. Then x admits 4
different itineraries, i.e. four different choices of k-tuples which we
denote with n̄(0), n̄(1), n̄(2), n̄(3) respectively. Without loss of generality

we will assume38 that n̄
(i)
0 6= n̄

(j)
0 for some 0 ≤ i, j < 4. Observe that

n̄
(i)
0 can take only two possible values (in case ηl ∈ Z + 1/2). There

are thus two possibilities, which can be described (again without loss
of generality) as follows:

(a) n̄
(0)
0 = n̄

(1)
0 6= n̄

(2)
0 = n̄

(3)
0 ,

(b) n̄
(0)
0 = n̄

(1)
0 = n̄

(2)
0 6= n̄

(3)
0 .

Let us first tackle case (a). Let m′ (resp. m′′) denote the least index so

that n̄
(0)
m′ 6= n̄

(1)
m′ (resp. n̄

(2)
m′′ 6= n̄

(3)
m′′). By (A.2) we conclude that

η̃
(0)
m′ = Pm′ η̃

(0)
0 + Pm′−1ξ

(0)
0 −

m′−1∑
j=0

Pm′−j−1ν̄
(0)
j ,

η̃
(2)
m′′ = Pm′′ η̃

(2)
0 + Pm′′−1ξ

(2)
0 −

m′′−1∑
j=0

Pm′′−j−1ν̄
(2)
j .

Observe that by assumption η̃
(0)
0 = −η̃(2)

0 , so that one of the numbers

is −1
2

and the other is +1
2

(otherwise n̄
(0)
0 = n̄

(2)
0 ) and ξ

(0)
0 = ξ

(2)
0 .

Multiplying the first equation by Pm′′−1 and the second one by Pm′−1

and subtracting we obtain

Pm′′−1η̃
(0)
m′ − Pm′−1η̃

(2)
m′′ = (Pm′Pm′′−1 + Pm′′Pm′−1)η̃

(0)
0 +O(κm

′+m′′−2)

Since η̃
(0)
0 , η̃

(0)
m′ , η̃

(2)
m′′ = ±1/2 and Pl is monic, we conclude that the above

condition can be written in the form

Q(κ; η̃
(0)
0 , η̃

(0)
m′ , η̃

(2)
m′′ , ν̄

(0)
0 , · · · , ν̄(0)

m′−1, ν̄
(2)
0 , . . . , ν̄

(2)
m′′−1) = 0

37 i.e. the coefficient of degree l is equal to 1
38 Otherwise we consider F̂mx rather than x, where m is the least index so that

n̄
(i)
m 6= n̄

(j)
m for some 0 ≤ i, j < 4.
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where Q is a nonzero polynomial of degree m′ + m′′ − 1 in κ. since k
is fixed, for each R > 2 and 2 ≤ κ < R we have only finitely many
choices of the reduced itineraries ν̄(i). Hence if we remove a discrete
set of parameters, the above equation cannot hold for any itinerary.

Let us now consider case (b). We claim that in this case one of the

itineraries (e.g. ν̄(0)) is such that there exists l < m with η̃
(0)
l = ±1/2

and η̃
(0)
m = ±1/2. In fact let l be the least index so that n̄

(i)
l 6= n̄

(j)
l

for some i 6= j, which implies that η̃
(i)
l = ±1/2 for i = 0, 1, 2. On

the other hand, n̄
(i)
l can take only two possible values, thus we can

assume without loss of generality that n̄
(0)
l = n̄

(1)
l . But n̄(0) and n̄(1)

differ so there must exist m > l so that n̄
(0)
m 6= n̄

(1)
m , which implies that

η̃
(0)
m = ±1/2.
Thus by (A.2) we have

η̃(0)
m = Pm−lη̃

(0)
l + Pm−l−1ξ

(0)
l −

m−l−1∑
j=0

Pm−l−j−1ν̄
(0)
l+j

while (A.4) and the fact that ξ
(1)
0 = −η̃(0)

0 give

−η̃(0)
0 = Pl−1ξ

(0)
l + Pl−2η̃

(0)
l +

l−2∑
j=0

Pj ν̄
(0)
j+1.

Multiplying the first equation by Pl−1 and the second by Pm−l−1 and
subtracting we obtain

Pl−1η̃
(0)
m +Pm−l−1η̃

(0)
0 = (Pm−lPl−1 − Pm−l−1Pl−2)η̃

(0)
l +O(κm−2).

Once again the above condition can be written in the form

Q(κ; η̃
(0)
0 , η̃

(0)
l , η̃(0)

m , ν̄
(0)
0 , · · · , ν̄(0)

m ) = 0

where Q is a nonzero polynomial of degree m − 1. Using the same
arguments as in case (a) we can conclude the proof. �
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