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Abstract. The proof of [2,Theorem 5.67] relies on an estimatewhich is
left as an exercise (namely [2, Exercise 5.69]) but appears to be incorrect.
In these notes we provide a proof of the above mentioned result.

1. The problem

This short note proposes a correction to the proof of [2, Theorem 5.67].
The theorem is further used in the cited book to prove the so-called Funda-
mental Theorem [2, Theorem 5.70] and it is also heavily relied upon in [1].

In this paper uwe will use the notation introduced in various stages
in [2]. We will only explicitly recall those definitions that need to be cor-
rected. Here follows the statement of the theorem that we will prove.

Theorem 5.67. For any weakly homogeneous unstable curve (see [2, Defi-
nition 5.9]) W ⊂ M, the stable H-manifold W s

H(x) exists (i.e. r
s
H > 0) for

mW -almost every x ∈ W . Furthermore, there exists C > 0 so that:

mW{x ∈ W : rsH(x) < ε} ≤ Cε.

The proof of the above theorem outlined in [2] relies on [2, Exercise
5.69], which claims that there exist a constantC > 0 so that for anyweakly
homogeneous unstable curve W , any x ∈ W and any n ≥ 1:

CEs(Fnx)ds(Fnx,SH
−1) ≥ rn−1(x),(1.1)

where Es(y) bounds the expansion of stable curves by F−1 at y (see [2,
(5.57)]), ds denotes the distance along stable curves and, finally, for x ∈ W ,
we denote with rn(x) the distance (measured along the curve FnW ) of
Fnx from the boundary of the H-component ofFnW which containsFnx.

We observe that (1.1) does not hold: on the one hand Fn−1x may be
arbitrarily close to SH

1 , hence the left hand side of the inequality can be
arbitrarily small. On the other hand, the right hand side has no reason to
be small, because the H-component ofFn−1W containingFn−1x does not
necessarily terminate near Fn−1x.
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2. Our proposed correction

We propose a variation on the definition of the function rn which sat-
isfies [2, Exercise 5.69], and then prove a growth lemma for this modified
function.

2.1. Finite horizon billiards. It is instructive to first deal with finite
horizon billiards, since this case requires a modification simpler than for
the infinite horizon case, which will be considered in the next subsection.
Let W be a weakly homogeneous unstable curve and, for any x ∈ W , de-
note withWn(x) the H-component ofFnW containing the pointFnx. For
n ≥ 0 we let r̃n(x) denote the distance, measured along Wn(x), from the
point Fnx to ∂Wn(x) ∪ S1. Observe that r̃n ≤ rn. Then we propose the
following correction of [2, Exercise 5.69].

Lemma 2.1. There exists a constant C > 0 such that

CEs(Fnx)ds(Fnx,SH
−1) ≥ min{r̃n−1(x), Es(Fnx)rn(x)}.

Proof. First recall (see [2, (5.15)]) that

SH
−1 = S ∪ FS ∪ S−1,

hence for any x ∈ M \ Sn

ds(Fnx,SH
−1) = min{ds(Fnx,S), ds(Fnx,FS), ds(Fnx,S−1)}.

We proceed to estimate separately each of the three quantities on the right
hand side. We begin with ds(Fnx,S); recall that S is a countable union
of horizontal curves. By definition it holds that ds(Fnx,S) ≥ d(Fnx,S);
moreover since the unstable cone is uniformly transversal to the horizontal
direction (see [2, (4.13)]) and since weakly homogeneous unstable curves
cannot cross the boundaries S of homogeneity strips, we conclude that
there exists c > 0 so that

ds(Fnx, S) ≥ crn(x).

Let us then consider the term ds(Fnx,FS). There are two possibilities:
recall that ds(y, S) = infz∈S d

s(y, z); either the inf is attained, or it is not.
If it is attained, then1, observe that the preimage of any stable curve linking
Fnx to FS is a stable curve linking Fn−1x to S, whose length is expanded
(see [2, (5.57)]) by Es(Fnx); hence for some c > 0,

Es(Fnx)ds(Fnx,FS) ≥ cds(Fn−1x,S)

1This is, essentially the argument hinted in the book to solve Exercise 5.69, but bounds
for the other two possibilities are missing.
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and arguing (by uniform transversality) as in the previous case we con-
clude that

Es(Fnx)ds(Fnx,FS) ≥ crn−1(x).

If, on the other hand, the inf is not attained, it means that it is attained
for a limit point in cl (FS) \ FS. However, the discussion of [2, page 110,
see also Figure 5.2], implies that all accumulation points of FS lie on S−1,
which yields that in this case ds(Fnx,FS) ≥ ds(Fnx,S−1), which we
now proceed to treat.

Observe that any stable curve linking Fnx to S−1 is mapped by F−1 to
a stable curve linking Fn−1x to S1; we thus obtain, for some c > 0

Es(Fnx)ds(Fnx,S−1) ≥ cds(Fn−1x,S1).

Once again observe that we have ds(Fn−1x,S1) ≥ d(Fn−1x,S1). More-
over, any unstable curve W is uniformly transversal to any curve in S1

(see [2, (4.13) and (4.21)]). We conclude that we can find c′ > 0 so that
ds(Fn−1x,S1) ≥ c′r̃n−1(x).

Our lemma then follows from grouping these estimates together, and
observing that r̃n−1 ≤ rn−1. �

2.2. Infinite horizon billiards. In order to deal with the case of infi-
nite horizon billiards, we will need an improvement on the bound given in
Lemma 2.1. In order to state this improved bound, we find convenient to
recall some observations from [2]. For ease of exposition, we restrict our
analysis to infinite horizon billiards of the type described in [2] (see [2,
Figure 2.4] for an example). Namely, we only consider periodic arrange-
ments of scatterers which arise as unfoldings of some domain D on Tor2.
For such billiards, the following properties hold:

Proposition 2.2.
(a) The singularity set S1 consists of countably many smooth compact

curves (see [2, Proposition 4.45]);
(b) there exist finitelymany accumulation points {x1, x2, · · ·xs} for those

curves (see [2, Exercise 4.51]); all such points lie on S0;
(c) for any k ∈ {1, · · · , s}, the singularity set in a neighborhood of xk

is described by [2, Figure 4.15]

In particular, let xk ∈ S0 denote one such accumulation point; then a
sufficiently small neighborhood of xk is intersected by countably many
stable curves, which form a so-called infinite horizon sequence. Each curve
in this sequence corresponds to a grazing collision with some scatterer
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that belongs to a fundamental domain at a distance at least2 ν > 0. Let us
denote such curve with S1,k,ν . This implies (see [2, (4.21)]) that there exists
c > 0 so that S1,k,ν is tangent to the following cone:

Ĉs
ν = {−K − cν−3/2 ≤ dϕ

dr
≤ −K};(2.1)

in fact τ ∼ ν and [2, Exercise 4.52] implies that we have that cosϕ ≤
cν−1/2 for some c > 0. Similar considerations imply that any stable curve
in the cell D+

k,ν has to be tangent to the same cone.
Denote with S∗

1 the union of those singularity curves in S1 that do not
belong to any infinite horizon sequence, and let

SN
1 = S∗

1 ∪
⋃
k

⋃
ν≤N

S1,k,ν .

Then fix some N̄ sufficiently large; since all curves in S∗
1 do not belong to

any infinite horizon sequence, it is possible to choose N̄ so large that any
curve in S∗

1 will correspond to grazing collision with flight time at most3
N̄ . For any weakly homogeneous unstable curve W and any x ∈ W , we
thus define:

r̃W,∗(x) = inf
N>N̄

{N3/2dW (x,SN
1 )}.

where dW (x,S) denotes the distance of x from S measured along W ,
which can be defined as follows: let W ′ be the connected component of
W \S containing x; then x in turn cutsW ′ into two subcurves; we denote
with dW (x,S) the length of the shortest of such subcurves. In particular
dW (x,S) = 0 if x ∈ ∂W or x ∈ S . Finally, for n ≥ 0, we introduce the
shorthand notation

r̃n,∗(x) = r̃Wn(x),∗(x),

where Wn(x) is the H-component of FnW containing Fnx.

Lemma 2.3. There exists K = K(D) > 0 depending only on the geometry
of the billiard and δ > 0 so that for any N sufficiently large, any unstable
curveW with |W | < δ can intersect at mostK ·N singularity curves in SN

1 .

Proof (see also [2, Page 129]). Recall that since we are considering billiards
without corner points, there exists τmin > 0 so that between any two con-
secutive collisions we must have a flight time of at least τmin. On the other
hand, singularities curves in SN

1 have a flight time that is bounded above

2In [2], the symbol n is used instead of ν, but this will not work that well with our
notation

3The definition of “infinite horizon sequence” in fact allows for some flexibility in the
choice of such an N̄ .
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by N ; we conclude that at most N/τmin singularity curves in SN
1 may join

at any point x ∈ S1; setting K = 1/τmin we conclude that any suffi-
ciently short unstable curve can intersect at most k ·N singularity curves
in SN

1 . �

We now show that the modified function also satisfies the statement of
Lemma 2.1; namely:

Lemma 2.4. There exists a constant C > 0 such that

CEs(Fnx)ds(Fnx,SH
−1) ≥ min{r̃n−1,∗(x), Es(Fnx)rn(x)}.

Proof. The proof of the above lemma follows the same argument of the
proof of Lemma 2.1; the modification is needed in the estimate of the last
term. We proceed thus to estimate ds(Fn−1,S1). Now we further decom-
pose

S1 =
⋃

N>N̄

SN
1 ,

hence
ds(Fn−1x,S1) = inf

N>N̄
ds(Fn−1x,SN

1 ).

We now show that there exists C so that for any N > N̄ ;

ds(Fn−1x,SN
1 ) ≥ C min

N̄≤M≤N
{M3/2d(Fn−1x,SM

1 )}(2.2)

This suffices to conclude, since unstable manifolds are uniformly transver-
sal to stable manifolds and thus for some c > 0:

d(Fn−1x,SM
1 ) ≥ c · dWn−1(x)(Fn−1x,SM

1 ).

We prove the estimate (2.2) by induction on N ; if N = N̄ , the estimate is
trivial provided that C ≤ N̄−3/2. Assume that (2.2) holds for N − 1, then

ds(Fn−1x,SN
1 ) = min{ds(Fn−1x,SN−1

1 ), ds(Fn−1x,SN
1 \ SN−1

1 )}
and by inductive hypothesis:

ds(Fn−1x,SN
1 ) ≥ Cmin

{
min

N̄≤M≤N−1
{M3/2d(Fn−1x,SN−1

1 )},

ds(Fn−1x,SN
1 \ SN−1

1 )
}
.

It thus suffices to show:
ds(Fn−1x,SN

1 \ SN−1
1 ) ≥ CN3/2d(Fn−1x,SN

1 ).(2.3)

The proof of (2.3) follows from the observation that if a stable curve links
some point y with SN

1 \ SN−1
1 , then necessarily y ∈ Dk,ν for some k and

some ν > N − 1. By construction the whole stable curve has to belong to
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such cell, and therefore the angle between the stable curve and the singu-
larity curve is bounded above by cN−3/2 by (2.1). This implies (2.3). �

2.3. Growth Lemma. In this subsection we prove that the First Growth
Lemma [2, Theorem 5.52] holds for the modified function r̃n,∗. We use the
convention that C# denotes some arbitrary positive constant whose value
might be different from instance to instance.

Lemma 2.5 (Modified First Growth Lemma). LetW ⊂ M be a sufficiently
short unstable curve. There are constants Λ̂ > 1, ϑ1 ∈ (0, 1), and c1, c2 > 0
such that for all n ≥ 0 and ε > 0:

mW (r̃n,∗(x) < ε) ≤ c1(ϑ1Λ̂)
nmW (r0 < ε/Λ̂n) + c2εmW (W ).(2.4)

By combining the above lemmata according to the strategy outlined
in [2, page 137], we obtain a correct proof of [2, Theorem 5.67].

Before proving theGrowth Lemma, we recall a useful fact for the reader’s
convenience:

Lemma 2.6 (Distortion bound, see [2, Lemma 5.27]). There existsCd > 0 so
that for any weakly homogeneous unstable manifoldW ,Wn a H-component
of FnW and Vn = F−nWn ⊂ W , the following holds. For any measurable
set E:

C−1
d

mWn(E)

mWn(Wn)
≤ mVn(F−nE)

mVn(Vn)
≤ Cd

mWn(E)

mWn(Wn)
.

We now proceed with proving the Modified Growth Lemma; the main
observation is the following

Lemma 2.7. There exists C > 0 and δ > 0 so that for any |W | < δ

mW (r̃W,∗(x) < ε) ≤ mW (rW (x) < Cε)

Proof. Let δ > 0 be the one found in Lemma 2.3; then for any W with
|W | < δ the set {r̃W,∗(x) < ε} is a union of

• 2 intervals of size ε at the boundary of W ;
• at mostK · N̄ intervals of size 2C#ε centered at each point ofWi∩
SN̄
1 (recall Lemma 2.3)

• at most one sequence of intervals {In}∞n=N̄
each of size C#n

−3/2ε,
corresponding to a possible infinite horizon sequence.

Hence:

mW (r̃W,∗(x) < ε) ≤ 2ε

1 + C#KN̄ + C#

∑
n≥N̄

n−3/2

 < 2Cε,(2.5)

that proves the lemma, since mW (rW (x) < Cε) ≤ min{2Cε,mW (W )}.
�
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Proof of Lemma 2.5. In order to refer directly to some formulas in [2], we
find convenient to introduce the adapted length | · |∗, which is the length
measured with respect to the adapted metric ‖ ·‖∗ defined in [2, page 127].
Let m∗

W denote the measure with respect to | · |∗. Since the metric ‖ · ‖∗
and the Euclidean metric are uniformly equivalent (see [2, Exercise 5.54]),
it suffices to show the following inequality

m∗
W (r̃n,∗(x) < ε) ≤ c1(ϑ1Λ̂)

nm∗
W (r0 < ε/Λ̂n) + c2εm

∗
W (W ).(2.6)

Let us fix δ > 0 sufficiently small; we now recall the definition of short-
ened H-components, which was introduced in [2, Theorem 5.52]. Given
W , let W1 be an arbitrary H-component of FW ; it might happen that
|W1|∗ > δ. If this is the case, we partition it in k curves of equal |·|∗-length,
where k = b|W |∗/δc+ 1. The collection of all subcurves obtained by par-
titioning all H-components of FW constitutes is the set of shortened H-
components ofFW and will be denoted by {W ′

1,i}. Inducing this construc-
tion on each shortened H-component of FnW yields the set of shortened
H-components of Fn+1W for n ≥ 1. This construction leads naturally to
the definition ofW ′

n(x) to be that shortened H-component of FnW which
contains Fnx and of the corresponding function r′n(x) = rWn(x)(Fnx).

Recall that the original Growth Lemma (or rather, its proof, see [2, The-
orem 5.52]) implies that, for some c′1, c′2 > 0:

m∗
W (r′n < ε) ≤ c′1(ϑ1Λ̂)

nm∗
W (r0 < ε/Λ̂n) + c′2εm

∗
W (W ).(2.7)

LetWn be a shortened H-component of FnW ; then Lemma 2.7 implies:

m∗
Wn

(r̃Wn,∗(x) < ε) ≤ m∗
Wn

(rWn(x) < Cε).

Using the distortion estimate given in Lemma 2.6 we conclude that, letting
Vn = F−nWn:

m∗
Vn
(r̃Wn,∗(Fnx) < ε) ≤ C2

dm
∗
Vn
(rWn(x) < Cε)

Summing over all Vn’s we obtain m∗
W (r̃n,∗(x) < ε) ≤ C2

dm
∗
W (r′n(x) <

Cε), and using (2.7) we conclude that

m∗
W (r̃n,∗(x) < ε) ≤ C1(ϑ1Λ̂)

nm∗
W (r∗0 < ε/Λ̂n) + C2εm

∗
W (W ). �
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