Algebra II final

Name:

April 24, 2012

1. Find the Galois groups of the polynomial $x^{4}-2$ over each of the fields $\mathbb{Q}, \mathbb{F}_{3}$, and \mathbb{F}_{5}. You may use without proof the following facts:

- $x^{4}-2$ is irreducible over \mathbb{Q}.
- $x^{4}-2=\left(x^{2}-x-1\right)\left(x^{2}+x-1\right)$ over \mathbb{F}_{3}.
- $x^{4}-2$ is irreducible over \mathbb{F}_{5}.

2. Let $F \subset K$ be a Galois extension with Galois group G. Suppose that an intermediate field $F \subset E \subset K$ and a subgroup $H \subset G$ correspond, in the sense that $H=\operatorname{Gal}(K / E)$. Prove that $F \subset E$ is a Galois extension if and only if H is a normal subgroup of G.
3. Let R be a Noetherian commutative ring and let M be a finitely generated R-module. Suppose that $f: M \rightarrow M$ is a surjective R-module morphism. Prove that f is injective. (You may use the following result: if M is a finitely generated module over a Noetherian ring, then there are no infinite ascending chains of submodules of M.)
4. Let V be an irreducible complex representation of a finite group G. Let $H \subset G$ be a subgroup of index k. Let $W \subset V$ be an H-invariant subspace.
(a) Prove that $\operatorname{dim} W \geq \frac{1}{k} \operatorname{dim} V$.
(b) Prove that if $\operatorname{dim} W=\frac{1}{k} \operatorname{dim} V$, then W is an irreducible H representation.
5. Let G be a finite group. Prove that the following are equivalent.
(a) For every $g \in G$, there exists $h \in G$ such that $g^{-1}=h g h^{-1}$.
(b) For every complex representation V of $G, V \cong V^{*}$.

6 . Let k be an algebraically closed field. Recall the following results.

Zariski's Lemma

If $k \subset F$ is a field extension such that F is finitely generated as a k-algebra, then $F=k$.

Weak form of Hilbert's Nullstellensatz

If $I \subsetneq k\left[x_{1}, \ldots, x_{n}\right]$ is a proper ideal, then $Z(I) \neq \emptyset$.
(a) Prove Zariski's Lemma using the weak form of the Nullstellensatz.
(b) Prove the weak form of Nullstellensatz using Zariski's lemma.

