Algebra II final

Name:

April 24, 2012

- 1. Find the Galois groups of the polynomial $x^4 2$ over each of the fields \mathbb{Q}, \mathbb{F}_3 , and \mathbb{F}_5 . You may use without proof the following facts:
 - $x^4 2$ is irreducible over \mathbb{Q} .
 - $x^4 2 = (x^2 x 1)(x^2 + x 1)$ over \mathbb{F}_3 .
 - $x^4 2$ is irreducible over \mathbb{F}_5 .
- 2. Let $F \subset K$ be a Galois extension with Galois group G. Suppose that an intermediate field $F \subset E \subset K$ and a subgroup $H \subset G$ correspond, in the sense that H = Gal(K/E). Prove that $F \subset E$ is a Galois extension if and only if H is a normal subgroup of G.
- 3. Let R be a Noetherian commutative ring and let M be a finitely generated R-module. Suppose that $f: M \to M$ is a surjective R-module morphism. Prove that f is injective. (You may use the following result: if M is a finitely generated module over a Noetherian ring, then there are no infinite ascending chains of submodules of M.)
- 4. Let V be an irreducible complex representation of a finite group G. Let $H \subset G$ be a subgroup of index k. Let $W \subset V$ be an H-invariant subspace.
 - (a) Prove that $\dim W \ge \frac{1}{k} \dim V$.
 - (b) Prove that if dim $W = \frac{1}{k} \dim V$, then W is an irreducible H-representation.
- 5. Let G be a finite group. Prove that the following are equivalent.

- (a) For every $g \in G$, there exists $h \in G$ such that $g^{-1} = hgh^{-1}$.
- (b) For every complex representation V of $G, V \cong V^*$.
- 6. Let k be an algebraically closed field. Recall the following results.

Zariski's Lemma

If $k \subset F$ is a field extension such that F is finitely generated as a k-algebra, then F = k.

Weak form of Hilbert's Nullstellensatz

If $I \subsetneq k[x_1, \ldots, x_n]$ is a proper ideal, then $Z(I) \neq \emptyset$.

- (a) Prove Zariski's Lemma using the weak form of the Nullstellensatz.
- (b) Prove the weak form of Nullstellensatz using Zariski's lemma.