ASSIGNMENT 1 DUE THURSDAY JANUARY 19

(1) Prove that the field of Laurent series is isomorphic to the fraction field of the field of power series (i.e. show that $k((t))=Q(k[[t]]))$.
(2) Construct a field with 4 elements by adjoining to \mathbb{F}_{2} the root of an irreducible quadratic polynomial. Find the multiplication table for your field.
(3) Let F be a field of characteristic other than 2. Let D_{1}, D_{2} be elements of F, neither of which is a square in F. Prove that $F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ is of degree 4 over F if $D_{1} D_{2}$ is not a square in F and is of degree 2 otherwise.
(4) Show that $\mathbb{Q}(\sqrt{2})$ is not isomorphic to $\mathbb{Q}(\sqrt{3})$.
(5) Give an example of a field F and a non-zero map of fields $\phi: F \rightarrow F$ which is not an isomorphism. Are there any examples when F is an algebraic extension of \mathbb{Q} ?
(6) Suppose that α is algebraic over F and that $[F(\alpha): F]=p$ a prime. Show that for all $1 \leq k<p$, we have $F\left(\alpha^{k}\right)=F(\alpha)$.

