ASSIGNMENT 4 DUE THURSDAY FEBRUARY 9

(1) Let G be a finite group. Prove that there exists a Galois extension $F \subset K$ such that $G a l(K / F)=G$. (Note: F and K can depend on G.)
(2) Let p, q be distinct odd prime numbers. Prove that the polynomial $x^{4}-$ $p x^{2}+q \in \mathbb{Q}[x]$ is irreducible and that its Galois group is the dihedral group of order 8 .
(3) Let $f(x) \in \mathbb{Q}[x]$ be a degree 5 irreducible polynomial with exactly 3 real roots. Show that the Galois group of $f(x)$ is S_{5}. (Hint: first show that it contains a transposition, then show that it contains a 5 -cycle.)
(4) Let p be an odd prime. Prove that the discriminant of the cyclotomic polynomial $\Phi_{p}(x)$ is $(-1)^{(p-1) / 2} p^{p-2}$. Use this to show that

$$
\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right) \subset Q\left(\zeta_{p}\right) .
$$

