ASSIGNMENT 1 DUE THURSDAY SEPTEMBER 24

(1) If I, J are ideals, show that $V(I J)=V(I) \cup V(J)$.
(Recall that in class we already proved that $V(I \cap J)=V(I) \cup V(J)$ why doesn't this contradict the Nullstellansatz.)
(2) Exercise I. 4 from Perrin (page 24).
(3) Find the irreducible components of the algebraic variety in k^{3} defined by the equations $y^{2}=x z$ and $z^{2}=y^{3}$.
(4) Let X be an irreducible topological space. Prove that any non-empty open subset U of X is dense. (This means that the smallest closed subset of X which contains U is all of X.)
Bonus Define X to be the set of pairs of matrices whose product in either direction is 0 , ie.

$$
X:=\left\{(A, B) \in M a t_{n, m}(k) \times M a t_{m, n}(k): A B=B A=0\right\}
$$

Show that X is an affine variety. Find the components of X.

