ASSIGNMENT 5 DUE THURSDAY NOV 26

(1) Exercise IV. 6 on page 85 of Perrin.

You will need to use Theorem 3.7 on page 78 , which we did not cover in class. So the first thing to do is to read and understand this theorem.

Bonus: in class, we showed that the Grassmannian was a projective variety. We gave an explicit embedding into projective space. Use our embedding to show that the φ defined in this question is actually a morphism of varieties.
(2) Find the singular points on the variety in \mathbb{P}^{3} defined by $x y^{2}-z^{2} t$.
(3) Consider the variety X of nilpotent 2×2 matrices (ie the set of 2×2 matrices A such that $A^{2}=0$). Show that $A \in X$ is a singular point of X if and only if $A=0$.

You may use (without proof) the fact that the ideal of X in k^{4} (all matrices) is generated by the trace and determinant.

Bonus: Generalize this to 3 x 3 matrices. Show that $A \in X$ is a singular point if and only if $\operatorname{rank} A \leq 1$ (here X is the variety of nilpotent 3 x 3 matrices). You may use that the ideal of X in k^{9} is generated by the coefficients of the characteristic polynomial. You may also use that $\operatorname{dim}(X)=6$.
(4) Let $X \subset \mathbb{P}^{n}$ be a smooth projective variety which is not contained in any projective hyperplane and also is not equal to \mathbb{P}^{n}.

Let

$$
C(X)=\left\{\left(a_{0}, \ldots, a_{n}\right):\left[a_{0}, \ldots, a_{n}\right] \in X\right\} \cup\{0\} \subset k^{n+1}
$$

be the cone on X (recall that it is an affine variety). Show that 0 is the only singular point of X.

