Bilinear forms and their matrices

Joel Kamnitzer

March 11, 2011

0.1 Definitions

A bilinear form on a vector space V over a field \mathbb{F} is a map

$$
H: V \times V \rightarrow \mathbb{F}
$$

such that
(i) $H\left(v_{1}+v_{2}, w\right)=H\left(v_{1}, w\right)+H\left(v_{2}, w\right)$, for all $v_{1}, v_{2}, w \in V$
(ii) $H\left(v, w_{1}+w_{2}\right)=H\left(v, w_{1}\right)+H\left(v, w_{2}\right)$, for all $v, w_{1}, w_{2} \in V$
(iii) $H(a v, w)=a H(v, w)$, for all $v, w \in V, a \in \mathbb{F}$
(iv) $H(v, a w)=a H(v, w)$, for all $v, w \in V, a \in \mathbb{F}$

A bilinear form H is called symmetric if $H(v, w)=H(w, v)$ for all $v, w \in V$.
A bilinear form H is called skew-symmetric if $H(v, w)=-H(w, v)$ for all $v, w \in V$.

A bilinear form H is called non-degenerate if for all $v \in V$, there exists $w \in V$, such that $H(w, v) \neq 0$.

A bilinear form H defines a map $H^{\#}: V \rightarrow V^{*}$ which takes w to the linear $\operatorname{map} v \mapsto H(v, w)$. In other words, $H^{\#}(w)(v)=H(v, w)$.

Note that H is non-degenerate if and only if the map $H^{\#}: V \rightarrow V^{*}$ is injective. Since V and V^{*} are finite-dimensional vector spaces of the same dimension, this map is injective if and only if it is invertible.

0.2 Matrices of bilinear forms

If we take $V=\mathbb{F}^{n}$, then every $n \times n$ matrix A gives rise to a bilinear form by the formula

$$
H_{A}(v, w)=v^{t} A w
$$

Example 0.1. Take $V=\mathbb{R}^{2}$. Some nice examples of bilinear forms are the ones coming from the matrices:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

Conversely, if V is any vector space and if v_{1}, \ldots, v_{n} is a basis for V, then we define the matrix $[H]_{v_{1}, \ldots, v_{n}}$ for H with respect to this basis to be the matrix whose i, j entry is $H\left(v_{i}, v_{j}\right)$.

Proposition 0.2. Take $V=\mathbb{F}^{n}$. The matrix for H_{A} with respect to the standard basis is A itself.

Proof. By definition,

$$
H_{A}\left(e_{i}, e_{j}\right)=e_{i}^{t} A e_{j}=A_{i j} .
$$

Recall that if V is a vector space with basis v_{1}, \ldots, v_{n}, then its dual space V^{*} has a dual basis $\alpha_{1}, \ldots, \alpha_{n}$. The element α_{j} of the dual basis is defined as the unique linear map from V to \mathbb{F} such that

$$
\alpha_{j}\left(v_{i}\right)=\left\{\begin{array}{l}
1 \text { if } i=j \\
0 \text { otherwise }
\end{array}\right.
$$

Proposition 0.3. The matrix for H with respect to v_{1}, \ldots, v_{n} is the same as the matrix for v_{1}, \ldots, v_{n} and $\alpha_{1}, \ldots, \alpha_{n}$ with respect to the map $H^{\#}: V \rightarrow V^{*}$.
Proof. Let $A=\left[H^{\#}\right]_{v_{1}, \ldots, v_{n}}^{\alpha_{1}, \ldots, \alpha_{n}}$. Then

$$
H^{\#} v_{j}=\sum_{k=1}^{n} A_{k j} \alpha_{k}
$$

Hence, $H\left(v_{i}, v_{j}\right)=H^{\#}\left(v_{j}\right)\left(v_{i}\right)=A_{i j}$ as desired.
From this proposition, we deduce the following corollary.
Corollary 0.4. H is non-degenerate if and only if the matrix $[H]_{v_{1}, \ldots, v_{n}}$ is invertible.

It is interesting to see how the matrix for a bilinear form changes when we changes the basis.

Theorem 0.5. Let V be a vector space with two bases v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n}. Let Q be the change of basis matrix. Let H be a bilinear form on V.

Then

$$
Q^{t}[H]_{v_{1}, \ldots, v_{n}} Q=[H]_{w_{1}, \ldots, w_{n}}
$$

Proof. Choosing the basis v_{1}, \ldots, v_{n} means that we can consider the case where $V=\mathbb{F}^{n}$, and v_{1}, \ldots, v_{n} denotes the standard basis. Then w_{1}, \ldots, w_{n} are the columns of Q and $w_{i}=Q v_{i}$.

Let $A=[H]_{v_{1}, \ldots, v_{n}}$.
So we have

$$
H\left(w_{i}, w_{j}\right)=w_{i}^{t} A w_{j}=\left(Q v_{i}\right)^{t} A Q v_{j}=v_{i}^{t} Q^{t} A Q v_{j}
$$

as desired.

You can think of this operation $A \mapsto Q^{t} A Q$ as simultaneous row and column operations.

Example 0.6. Consider

$$
A=\left[\begin{array}{ll}
0 & 4 \\
4 & 2
\end{array}\right]
$$

After doing simultaneous row and column operations we reach

$$
Q^{t} A Q=\left[\begin{array}{cc}
-8 & 0 \\
0 & 2
\end{array}\right]
$$

The new basis is $(1,-2),(0,1)$.

0.3 Isotropic vectors and perp spaces

A vector v is called isotropic if $H(v, v)=0$.
If H is skew-symmetric, then $H(v, v)=-H(v, v)$, so every vector is isotropic.
Let H be a non-degenerate bilinear form on a vector space V and let $W \subset V$ be a subspace. We define the perp space to W as

$$
W^{\perp}=\{v \in V: H(w, v)=0 \text { for all } w \in W\}
$$

Notice that W^{\perp} may intersect W. For example if W is the span of a vector v, then $W \subset W^{\perp}$ if and only if v is isotropic.

Example 0.7. If we take \mathbb{R}^{2} with the bilinear form $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, then $(1,1)$ is an isotropic vector and $\operatorname{span}(1,1)^{\perp}=\operatorname{span}(1,1)$.

So in general, V is not the direct sum of W and W^{\perp}. However, we have the following result which says that they have complementary dimension.

Proposition 0.8. $\operatorname{dim} W^{\perp}=\operatorname{dim} V-\operatorname{dim} W$
Proof. We have defined $H^{\#}: V \rightarrow V^{*}$. The inclusion of $W \subset V$ gives us a surjective linear map $\pi: V^{*} \rightarrow W^{*}$, and so by composition we get $T=\pi \circ H^{\#}$: $V \rightarrow W^{*}$. This map T is surjective since $H^{\#}$ is an isomorphism. Thus

$$
\operatorname{dim} \operatorname{null}(T)=\operatorname{dim} V-\operatorname{dim} W^{*}=\operatorname{dim} V-\operatorname{dim} W
$$

Checking through the definitions, we see that

$$
v \in \operatorname{null}(T) \text { if and only if } H^{\#}(v)(w)=0 \text { for all } w \in W
$$

Since $H^{\#}(v)(w)=H(w, v)$, this shows that $v \in \operatorname{null}(T)$ if and only if $v \in W^{\perp}$. Thus $W^{\perp}=\operatorname{null}(T)$ and so the result follows.

