Bilinear forms and their matrices

Joel Kamnitzer

March 11, 2011

0.1 Definitions

A bilinear form on a vector space V over a field \mathbb{F} is a map

 $H:V\times V\to \mathbb{F}$

such that

- (i) $H(v_1 + v_2, w) = H(v_1, w) + H(v_2, w)$, for all $v_1, v_2, w \in V$
- (ii) $H(v, w_1 + w_2) = H(v, w_1) + H(v, w_2)$, for all $v, w_1, w_2 \in V$
- (iii) H(av, w) = aH(v, w), for all $v, w \in V, a \in \mathbb{F}$
- (iv) H(v, aw) = aH(v, w), for all $v, w \in V, a \in \mathbb{F}$

A bilinear form H is called *symmetric* if H(v, w) = H(w, v) for all $v, w \in V$. A bilinear form H is called *skew-symmetric* if H(v, w) = -H(w, v) for all $v, w \in V$.

A bilinear form H is called *non-degenerate* if for all $v \in V$, there exists $w \in V$, such that $H(w, v) \neq 0$.

A bilinear form H defines a map $H^{\#}: V \to V^*$ which takes w to the linear map $v \mapsto H(v, w)$. In other words, $H^{\#}(w)(v) = H(v, w)$.

Note that H is non-degenerate if and only if the map $H^{\#}: V \to V^*$ is injective. Since V and V^* are finite-dimensional vector spaces of the same dimension, this map is injective if and only if it is invertible.

0.2 Matrices of bilinear forms

If we take $V = \mathbb{F}^n$, then every $n \times n$ matrix A gives rise to a bilinear form by the formula

$$H_A(v,w) = v^t A w$$

Example 0.1. Take $V = \mathbb{R}^2$. Some nice examples of bilinear forms are the ones coming from the matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Conversely, if V is any vector space and if v_1, \ldots, v_n is a basis for V, then we define the matrix $[H]_{v_1,\ldots,v_n}$ for H with respect to this basis to be the matrix whose i, j entry is $H(v_i, v_j)$.

Proposition 0.2. Take $V = \mathbb{F}^n$. The matrix for H_A with respect to the standard basis is A itself.

Proof. By definition,

$$H_A(e_i, e_j) = e_i^t A e_j = A_{ij}.$$

Recall that if V is a vector space with basis v_1, \ldots, v_n , then its dual space V^* has a dual basis $\alpha_1, \ldots, \alpha_n$. The element α_j of the dual basis is defined as the unique linear map from V to \mathbb{F} such that

$$\alpha_j(v_i) = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ otherwise} \end{cases}$$

Proposition 0.3. The matrix for H with respect to v_1, \ldots, v_n is the same as the matrix for v_1, \ldots, v_n and $\alpha_1, \ldots, \alpha_n$ with respect to the map $H^{\#}: V \to V^*$.

Proof. Let $A = [H^{\#}]_{v_1,...,v_n}^{\alpha_1,...,\alpha_n}$. Then

$$H^{\#}v_j = \sum_{k=1}^n A_{kj}\alpha_k$$

Hence, $H(v_i, v_j) = H^{\#}(v_j)(v_i) = A_{ij}$ as desired.

From this proposition, we deduce the following corollary.

Corollary 0.4. *H* is non-degenerate if and only if the matrix $[H]_{v_1,...,v_n}$ is invertible.

It is interesting to see how the matrix for a bilinear form changes when we changes the basis.

Theorem 0.5. Let V be a vector space with two bases v_1, \ldots, v_n and w_1, \ldots, w_n . Let Q be the change of basis matrix. Let H be a bilinear form on V.

Then

$$Q^{t} [H]_{v_{1},...,v_{n}} Q = [H]_{w_{1},...,w_{n}}$$

Proof. Choosing the basis v_1, \ldots, v_n means that we can consider the case where $V = \mathbb{F}^n$, and v_1, \ldots, v_n denotes the standard basis. Then w_1, \ldots, w_n are the columns of Q and $w_i = Qv_i$.

Let $A = [H]_{v_1, \dots, v_n}$. So we have

$$H(w_i, w_j) = w_i^t A w_j = (Q v_i)^t A Q v_j = v_i^t Q^t A Q v_j$$

as desired.

You can think of this operation $A \mapsto Q^t A Q$ as simultaneous row and column operations.

Example 0.6. Consider

$$A = \begin{bmatrix} 0 & 4\\ 4 & 2 \end{bmatrix}$$

After doing simultaneous row and column operations we reach

$$Q^t A Q = \begin{bmatrix} -8 & 0\\ 0 & 2 \end{bmatrix}$$

The new basis is (1, -2), (0, 1).

0.3 Isotropic vectors and perp spaces

A vector v is called *isotropic* if H(v, v) = 0.

If H is skew-symmetric, then H(v, v) = -H(v, v), so every vector is isotropic.

Let H be a non-degenerate bilinear form on a vector space V and let $W \subset V$ be a subspace. We define the *perp space* to W as

$$W^{\perp} = \{ v \in V : H(w, v) = 0 \text{ for all } w \in W \}$$

Notice that W^{\perp} may intersect W. For example if W is the span of a vector v, then $W \subset W^{\perp}$ if and only if v is isotropic.

Example 0.7. If we take \mathbb{R}^2 with the bilinear form $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, then (1, 1) is an isotropic vector and $span(1, 1)^{\perp} = span(1, 1)$.

So in general, V is not the direct sum of W and W^{\perp} . However, we have the following result which says that they have complementary dimension.

Proposition 0.8. dim $W^{\perp} = \dim V - \dim W$

Proof. We have defined $H^{\#}: V \to V^*$. The inclusion of $W \subset V$ gives us a surjective linear map $\pi: V^* \to W^*$, and so by composition we get $T = \pi \circ H^{\#}: V \to W^*$. This map T is surjective since $H^{\#}$ is an isomorphism. Thus

 $\dim \operatorname{null}(T) = \dim V - \dim W^* = \dim V - \dim W$

Checking through the definitions, we see that

 $v \in \operatorname{null}(T)$ if and only if $H^{\#}(v)(w) = 0$ for all $w \in W$

Since $H^{\#}(v)(w) = H(w, v)$, this shows that $v \in \text{null}(T)$ if and only if $v \in W^{\perp}$. Thus $W^{\perp} = \text{null}(T)$ and so the result follows.