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0.1 Definitions

A bilinear form on a vector space V over a field F is a map

H : V × V → F

such that

(i) H(v1 + v2, w) = H(v1, w) + H(v2, w), for all v1, v2, w ∈ V

(ii) H(v, w1 + w2) = H(v, w1) + H(v, w2), for all v, w1, w2 ∈ V

(iii) H(av,w) = aH(v, w), for all v, w ∈ V, a ∈ F

(iv) H(v, aw) = aH(v, w), for all v, w ∈ V, a ∈ F

A bilinear form H is called symmetric if H(v, w) = H(w, v) for all v, w ∈ V .
A bilinear form H is called skew-symmetric if H(v, w) = −H(w, v) for all

v, w ∈ V .
A bilinear form H is called non-degenerate if for all v ∈ V , there exists

w ∈ V , such that H(w, v) 6= 0.
A bilinear form H defines a map H# : V → V ∗ which takes w to the linear

map v 7→ H(v, w). In other words, H#(w)(v) = H(v, w).
Note that H is non-degenerate if and only if the map H# : V → V ∗ is

injective. Since V and V ∗ are finite-dimensional vector spaces of the same
dimension, this map is injective if and only if it is invertible.

0.2 Matrices of bilinear forms

If we take V = F
n, then every n × n matrix A gives rise to a bilinear form by

the formula
HA(v, w) = vtAw

Example 0.1. Take V = R
2. Some nice examples of bilinear forms are the

ones coming from the matrices:

[

1 0
0 1

]

,

[

1 0
0 −1

]

,

[

0 1
−1 0

]
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Conversely, if V is any vector space and if v1, . . . , vn is a basis for V , then
we define the matrix [H]v1,...,vn

for H with respect to this basis to be the matrix
whose i, j entry is H(vi, vj).

Proposition 0.2. Take V = F
n. The matrix for HA with respect to the stan-

dard basis is A itself.

Proof. By definition,
HA(ei, ej) = et

iAej = Aij .

Recall that if V is a vector space with basis v1, . . . , vn, then its dual space
V ∗ has a dual basis α1, . . . , αn. The element αj of the dual basis is defined as
the unique linear map from V to F such that

αj(vi) =

{

1 if i = j

0 otherwise

Proposition 0.3. The matrix for H with respect to v1, . . . , vn is the same as

the matrix for v1, . . . , vn and α1, . . . , αn with respect to the map H# : V → V ∗.

Proof. Let A = [H#]α1,...,αn

v1,...,vn

. Then

H#vj =

n
∑

k=1

Akjαk

Hence, H(vi, vj) = H#(vj)(vi) = Aij as desired.

From this proposition, we deduce the following corollary.

Corollary 0.4. H is non-degenerate if and only if the matrix [H]v1,...,vn
is

invertible.

It is interesting to see how the matrix for a bilinear form changes when we
changes the basis.

Theorem 0.5. Let V be a vector space with two bases v1, . . . , vn and w1, . . . , wn.

Let Q be the change of basis matrix. Let H be a bilinear form on V .

Then

Qt [H]v1,...,vn

Q = [H]w1,...,wn

Proof. Choosing the basis v1, . . . , vn means that we can consider the case where
V = F

n, and v1, . . . , vn denotes the standard basis. Then w1, . . . , wn are the
columns of Q and wi = Qvi.

Let A = [H]v1,...,vn

.
So we have

H(wi, wj) = wt
iAwj = (Qvi)

tAQvj = vt
iQ

tAQvj

as desired.
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You can think of this operation A 7→ QtAQ as simultaneous row and column
operations.

Example 0.6. Consider

A =

[

0 4
4 2

]

After doing simultaneous row and column operations we reach

QtAQ =

[

−8 0
0 2

]

The new basis is (1,−2), (0, 1).

0.3 Isotropic vectors and perp spaces

A vector v is called isotropic if H(v, v) = 0.
If H is skew-symmetric, then H(v, v) = −H(v, v), so every vector is isotropic.
Let H be a non-degenerate bilinear form on a vector space V and let W ⊂ V

be a subspace. We define the perp space to W as

W⊥ = {v ∈ V : H(w, v) = 0 for all w ∈ W}

Notice that W⊥ may intersect W . For example if W is the span of a vector v,
then W ⊂ W⊥ if and only if v is isotropic.

Example 0.7. If we take R
2 with the bilinear form

[

1 0
0 −1

]

, then (1, 1) is an

isotropic vector and span(1, 1)⊥ = span(1, 1).

So in general, V is not the direct sum of W and W⊥. However, we have the
following result which says that they have complementary dimension.

Proposition 0.8. dim W⊥ = dim V − dim W

Proof. We have defined H# : V → V ∗. The inclusion of W ⊂ V gives us a
surjective linear map π : V ∗ → W ∗, and so by composition we get T = π ◦H# :
V → W ∗. This map T is surjective since H# is an isomorphism. Thus

dim null(T ) = dimV − dimW ∗ = dim V − dim W

Checking through the definitions, we see that

v ∈ null(T ) if and only if H#(v)(w) = 0 for all w ∈ W

Since H#(v)(w) = H(w, v), this shows that v ∈ null(T ) if and only if v ∈ W⊥.
Thus W⊥ = null(T ) and so the result follows.
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