Final exam study suggestions

April 4, 2011

Review the definitions of the following notions.

1. inner product
2. adjoint of a linear operator (in the presence of an inner product)
3. orthogonal complement
4. normal, self-adjoint, isometry, and positive operators
5. singular values
6. bilinear form
7. quadratic form
8. isotropic vector and subspace
9. non-degenerate bilinear form
10. signature of a symmetric bilinear form
11. radical of symmetric bilinear form
12. symplectic form
13. Lagrangian subspace
14. dual vector space
15. dual basis
16. multilinear forms (also known as k-forms)
17. tensor products

Review all of your homework problems and also the following questions.

1. Axler $6.13,6.17,6.21,7.3,7.4,7.15,7.21,7.23,7.24,7.31,7.32$
2. Let $p(x, y)=x^{2}+3 x y+2 y^{2}$. Find a symmetric bilinear form on \mathbb{R}^{2} for which this polynomial is the associated quadratic form. Find the signature of this bilinear form.
3. Let H be a symmetric bilinear form on a vector space V. Let W be a subspace of V which is complementary to $\operatorname{rad}(H)$ (i.e. $\operatorname{rad}(H) \oplus W=V)$. Prove that H restricts to a non-degenerate bilinear form on W.
4. Let Ω be a symplectic form on a vector space V. Let $W \subset V$ be a subspace. Prove that $\left.\Omega\right|_{W}$ is non-degenerate if and only if $W \oplus W^{\perp}=V$.
5. Let H be a bilinear form on a vector space V. Assume the characteristic of the field is not 2. Prove that H is skew-symmetric if and only if $H(v, v)=0$ for all $v \in V$.
6. Consider the symmetric bilinear form on \mathbb{C}^{2} given by the matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Find a basis for \mathbb{C}^{2} for which this bilinear form is represented by the identity matrix.
7. Let H be a non-degenerate symmetric bilinear form on a complex vector space V. Show that we can find a basis for V for which H is represented by the identity matrix.
8. Let W be a vector space and let $U \subset W$ be a subspace. Recall that $V=W \oplus W^{*}$ carries a symplectic form Ω. Let

$$
U^{\prime}=\left\{\alpha \in W^{*}: \alpha(u)=0 \text { for all } u \in U\right\}
$$

Prove that $U \oplus U^{\prime}$ is a Lagrangian subspace of V.
9. Let V, W be vector spaces. Prove that $L\left(V^{*}, W\right)$, the space of linear maps from V^{*} to W, is a tensor product for V, W.
10. Let V be a vector space and let $v_{1}, \ldots, v_{k} \in V$. Prove that $H\left(v_{1}, \ldots, v_{k}\right)=$ 0 for all skew-symmetric k-forms H if and only if v_{1}, \ldots, v_{k} are linearly dependent.
11. Let V, W be vector spaces. Let $v_{1}, \ldots, v_{k} \in V$ be linearly independent. Suppose that there exists $w_{1}, \ldots, w_{k} \in W$ such that

$$
\sum_{i=1}^{k} v_{i} \otimes w_{i}=0
$$

in $V \otimes W$. Show that $w_{i}=0$ for all i.
12. Let V, W be two vector spaces. Let $v_{1}, v_{2} \in V$ be linearly independent and let $w_{1}, w_{2} \in W$ be linearly independent. Show that there do not exist $v \in V$ and $w \in W$ such that

$$
v_{1} \otimes w_{1}+v_{2} \otimes w_{2}=v \otimes w
$$

