MAT 247
 ASSIGNMENT 1 DUE THURSDAY JANUARY 20

Throughout the assignment, use the convention that $\langle a v, w\rangle=\bar{a}\langle v, w\rangle$ and $\langle v, a w\rangle=a\langle v, w\rangle$.
(1) Let V an inner product space and let $v, w \in V$. Prove that $\langle v, w\rangle=0$ if and only if $\|v\| \leq\|v+a w\|$ for all $a \in \mathbb{F}$ (here $\mathbb{F}=\mathbb{C}$ or \mathbb{R}).
(2) On $\mathcal{P}_{2}(\mathbb{R})$ (the vector space of polynomials of degree less than or equal to 2), consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt procedure to the basis $\left(1, x, x^{2}\right)$ to produce an orthonormal basis of $\mathcal{P}_{2}(\mathbb{R})$.
(3) What happens if the Gram-Schmidt procedure is applied to a list of vectors that is not linearly independent?
(4) Let V,\langle,$\rangle be a finite dimensional real inner product space.$
(a) For each $v \in V$, define a map $T_{v}: V \rightarrow \mathbb{R}$ by

$$
T_{v}(w)=\langle w, v\rangle
$$

Show that for each $v \in V, T_{v}$ is a linear map.
(b) Now define a map $F: V \rightarrow V^{*}$ by $F(v)=T_{v}$. Here $V^{*}=L(V, \mathbb{R})$ denotes the dual space of V. Show that F is a linear map.
(c) Prove that F is invertible. (First prove that it is injective and then use that $\left.\operatorname{dim} V=\operatorname{dim} V^{*}\right)$.
(d) What happens if V,\langle,$\rangle is a complex inner product space?$

