MAT 247
 ASSIGNMENT 3 DUE THURSDAY FEBRUARY 3

(1) (Axler 6.29) Let V be an inner product space and let $T: V \rightarrow V$ be a linear map. Let U be a subspace of V. Show that U is invariant under T if and only if U^{\perp} is invariant under T^{*}.
(2) (Axler 7.2) Prove or give a counterexample: the product of any two self-adjoint operators on a finite-dimensional inner product space is self-adjoint.
(3) (Axler 7.8) Show that there is no self-adjoint operator $T: \mathbb{R}^{3} \rightarrow$ \mathbb{R}^{3} such that $T(1,2,3)=0$ and $T(2,5,7)=(2,5,7)$.
(4) Consider the linear operator $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. Show that T is self-adjoint. Find an orthonormal basis for \mathbb{R}^{2} consisting of eigenvectors for T.

