MAT 247
 ASSIGNMENT 4 DUE THURSDAY FEBRUARY 10

(1) (Axler 7.9) Prove that a normal operator on a complex inner product space is self-adjoint iff all of its eigenvalues are real.
(2) (Axler 7.16) Give an example of an operator T on a inner product space V with a subspace W such that W is T-invariant, but W^{\perp} is not T-invariant.
(3) Let V be an inner product space and let W be a subspace. We have $V=W \oplus W^{\perp}$. Define a linear operator $T: V \rightarrow V$ by $T(w+u)=w-u$ if $w \in W$ and $u \in W^{\perp}$. Prove that T is an isometry and is self-adjoint.
(4) Prove the converse to (3). More precisely, suppose that V is an inner product space and $T: V \rightarrow V$ is a self-adjoint isometry. Show that there exists a subspace W of V such that $T(w+u)=$ $w-u$, whenever $w \in W$ and $u \in W^{\perp}$.

