MAT 247
 ASSIGNMENT 5
 DUE THURSDAY MARCH 3

(1) (Axler 7.19) Suppose that T is a positive operator on an inner product space V. Prove that T is invertible if and only if

$$
\langle T v, v\rangle>0
$$

for all $v \in V \backslash\{0\}$.
(2) (Axler 7.20) Prove or disprove: the identity operator on \mathbb{R}^{2} has infinitely many square roots.
(3) (Axler 7.23) Define a linear operator T on \mathbb{R}^{3} by $T\left(a_{1}, a_{2}, a_{3}\right)=$ $\left(a_{3}, 2 a_{1}, 3 a_{2}\right)$. Find an isometry S such that $T=S \sqrt{T^{*} T}$.
(4) (Axler 7.29) Let T be a linear operator an inner product space V. Prove that T is invertible if and only if 0 is not a singular value of T.

