MAT 247
 ASSIGNMENT 6 DUE THURSDAY MARCH 10

(1) (Axler 6.29) Let T be a linear operator on an inner product space. Prove that the dimension of the range of T equals the number of non-zero singular values of T.
(2) (Axler 6.33) Let T be a linear operator on an inner product space V. Let \hat{s} denote the smallest singular value of T and let s denote the largest singular value of T. Show that for all $v \in V$,

$$
\hat{s}\|v\| \leq\|T v\| \leq s\|v\| .
$$

(3) (a) Let H_{1}, H_{2} be two bilinear forms on a vector space V. Define a map $H_{1}+H_{2}: V \times V \rightarrow \mathbb{F}$ by

$$
\left(H_{1}+H_{2}\right)(v, w)=H_{1}(v, w)+H_{2}(v, w) .
$$

Show that $H_{1}+H_{2}$ is a bilinear form.
(b) Let H be a bilinear form on V and let $a \in \mathbb{F}$. Define $a H: V \rightarrow \mathbb{F}$ by

$$
(a H)(v, w)=a H(v, w)
$$

Show that $a H$ is a bilinear form.
Thus the set of all bilinear forms on a vector space forms a vector space.
(4) Let $V=M_{2}(\mathbb{F})$ be the vector space of 2×2 matrices over the field \mathbb{F}. Define a bilinear form H on V by

$$
H(A, B)=\operatorname{trace}(A B)
$$

Compute the matrix for H with respect to the usual basis for $M_{2}(\mathbb{F})$. Find a basis for $M_{2}(\mathbb{F})$ for which matrix of H is a diagonal matrix. (You may assume that $1+1 \neq 0$ in \mathbb{F}.)

