MAT 247
 ASSIGNMENT 7 DUE THURSDAY MARCH 17

(1) Consider the polynomial $p(x, y)=2 x^{2}+4 x y+3 y^{2}$.
(a) Find a symmetric bilinear form H on \mathbb{R}^{2} whose associated quadratic form is $p(x, y)$.
(b) Find a basis for \mathbb{R}^{2} for which this form is diagonal.
(c) Use (b) to decide whether the graph of $2 x^{2}+4 x y+3 y^{2}=1$ is an ellipse or a hyperbola.
(2) Let V be a vector space. Let v_{1}, \ldots, v_{n} be a basis for V and let $\alpha_{1}, \ldots, \alpha_{n}$ be the corresponding dual basis for V^{*}. Let w_{1}, \ldots, w_{n} be another basis for V and let $\beta_{1}, \ldots, \beta_{n}$ be the corresponding dual basis.
(a) Let Q be the change of basis matrix between v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n}. Show that Q^{t} is the change of basis matrix between $\beta_{1}, \ldots, \beta_{n}$ and $\alpha_{1}, \ldots, \alpha_{n}$. (Here by change of basis matrix, I mean that $w_{j}=\sum_{i=1}^{n} Q_{i j} v_{i}$.)
(b) Let H be a bilinear form on V. Use (a) to prove that

$$
[H]_{w_{1}, \ldots, w_{n}}=Q^{t}[H]_{v_{1}, \ldots, v_{n}} Q
$$

(3) Let V,\langle,$\rangle be a real inner product space. Let T: V \rightarrow V$ be a linear operator. Let $H: V \times V \rightarrow \mathbb{F}$ be the map defined by $H(v, w)=\langle v, T w\rangle$.
(a) Show that H is a bilinear form on V.
(b) Show that H is symmetric if and only if T is self-adjoint.
(c) Show that H is an inner product if and only if T is positive and invertible.

