MAT 247 ASSIGNMENT 7 DUE THURSDAY MARCH 17

- (1) Consider the polynomial $p(x, y) = 2x^2 + 4xy + 3y^2$.
 - (a) Find a symmetric bilinear form H on \mathbb{R}^2 whose associated quadratic form is p(x, y).
 - (b) Find a basis for \mathbb{R}^2 for which this form is diagonal.
 - (c) Use (b) to decide whether the graph of $2x^2 + 4xy + 3y^2 = 1$ is an ellipse or a hyperbola.
- (2) Let V be a vector space. Let v_1, \ldots, v_n be a basis for V and let $\alpha_1, \ldots, \alpha_n$ be the corresponding dual basis for V^* . Let w_1, \ldots, w_n be another basis for V and let β_1, \ldots, β_n be the corresponding dual basis.
 - (a) Let Q be the change of basis matrix between v_1, \ldots, v_n and w_1, \ldots, w_n . Show that Q^t is the change of basis matrix between β_1, \ldots, β_n and $\alpha_1, \ldots, \alpha_n$.

(Here by change of basis matrix, I mean that $w_j = \sum_{i=1}^n Q_{ij} v_i$.) (b) Let *H* be a bilinear form on *V*. Use (a) to prove that

$$[H]_{w_1,\dots,w_n} = Q^t \, [H]_{v_1,\dots,v_n} \, Q$$

- (3) Let V, \langle , \rangle be a real inner product space. Let $T : V \to V$ be a linear operator. Let $H : V \times V \to \mathbb{F}$ be the map defined by $H(v, w) = \langle v, Tw \rangle$.
 - (a) Show that H is a bilinear form on V.
 - (b) Show that H is symmetric if and only if T is self-adjoint.
 - (c) Show that H is an inner product if and only if T is positive and invertible.