MAT 247 ASSIGNMENT 8 DUE THURSDAY MARCH 25

- (1) Let V, \langle , \rangle be a real inner product space. Let T be a self-adjoint operator on V. On the previous assignment, we saw that T defines a symmetric bilinear form H by the formula $H(v, w) = \langle Tv, w \rangle$.
 - (a) Show that null(T) = rad(H).
 - (b) Find the signature of H in terms of information about the eigenvalues of T.
- (2) Let V, W be two real vector spaces of the same dimension and let H_V, H_W be symmetric bilinear forms on V, W respectively. We say that an invertible linear map $T: V \to W$ is an orthogonal isomorphism if

 $H_V(v_1, v_2) = H_W(Tv_1, Tv_2)$, for all $v_1, v_2 \in V$.

Prove that there exists an orthogonal isomorphism $T: V \to W$ if and only if the signature of H_V is the same as the signature of H_W .

(3) Let $V = \mathbb{R}^2$. Define a bilinear form H_A on V using the matrix

$$A = \begin{bmatrix} -2 & 1\\ 1 & -1 \end{bmatrix}.$$

What is the signature of H?