MAT 247
 ASSIGNMENT 8 DUE THURSDAY MARCH 25

(1) Let V,\langle,$\rangle be a real inner product space. Let T$ be a self-adjoint operator on V. On the previous assignment, we saw that T defines a symmetric bilinear form H by the formula $H(v, w)=$ $\langle T v, w\rangle$.
(a) Show that $\operatorname{null}(T)=\operatorname{rad}(H)$.
(b) Find the signature of H in terms of information about the eigenvalues of T.
(2) Let V, W be two real vector spaces of the same dimension and let H_{V}, H_{W} be symmetric bilinear forms on V, W respectively. We say that an invertible linear map $T: V \rightarrow W$ is an orthogonal isomorphism if

$$
H_{V}\left(v_{1}, v_{2}\right)=H_{W}\left(T v_{1}, T v_{2}\right), \text { for all } v_{1}, v_{2} \in V
$$

Prove that there exists an orthogonal isomorphism $T: V \rightarrow$ W if and only if the signature of H_{V} is the same as the signature of H_{W}.
(3) Let $V=\mathbb{R}^{2}$. Define a bilinear form H_{A} on V using the matrix

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
1 & -1
\end{array}\right]
$$

What is the signature of H ?

