MAT 247
 ASSIGNMENT 9 DUE TUESDAY APRIL 5

(1) Let $V=\mathbb{Q}$ (i.e. the 1-dimensional vector space over the field of rational numbers). Let H be a non-zero bilinear form on V.
(a) Show that we can find a basis v for V such that $[H]_{v}=[n]$, where n is a square-free integer (a non-zero integer which is not divisible by the square of an integer bigger than 1).
(b) Show that such an n is unique (in the same sense that the signature of symmetric bilinear form on a real vector space is unique).
(2) Let V be a vector space and let Ω be a symplectic form on V. Let L, M be two Lagrangian subspaces of V such that

$$
L \cap M=0 .
$$

(a) Show that $V=L \oplus M$.
(b) Define a linear map $T: M \rightarrow L^{*}$ by setting $T(v)$ to be the linear functional defined by $(T(v))(w)=\Omega(v, w)$. Prove that T is an isomorphism.
(c) Use the above results to find a symplectic basis

$$
q_{1}, \ldots, q_{n}, p_{1}, \ldots, p_{n}
$$

for V such that $q_{1}, \ldots, q_{n} \in L$ and $p_{1}, \ldots, p_{n} \in M$.
(3) Let V,\langle,$\rangle be a complex inner product space. We can regard V$ as a real vector space by just considering scalar multiplication by elements of \mathbb{R}. Define a real bilinear form Ω on V by

$$
\Omega(v, w)=\operatorname{Re}(\langle v, i w\rangle),
$$

where $R e$ denotes the real part of a complex number.
(a) Show that Ω is a real symplectic form on V.
(b) Let v_{1}, \ldots, v_{n} be a orthonormal basis for V (regarded as a complex inner product space). Show that

$$
v_{1}, \ldots, v_{n}, i v_{1}, \ldots, i v_{n}
$$

is a symplectic basis for V (regarded as a real vector space with symplectic form Ω).
(4) Recall that if $T: V \rightarrow W$ is a linear map, then there is a linear $\operatorname{map} T^{*}: W^{*} \rightarrow V^{*}$ which is defined by

$$
\left(T^{*}(\beta)\right)(v)=\beta(T v),
$$

for $\beta \in W^{*}$ and $v \in V$. Applying this reasoning twice, we see that there is a linear map $\left(T^{*}\right)^{*}:\left(V^{*}\right)^{*} \rightarrow\left(W^{*}\right)^{*}$.

In class, for each vector space V, we defined the isomorphism $\psi_{V}: V \rightarrow\left(V^{*}\right)^{*}$ by setting $\psi_{V}(v)$ to be the linear functional on V^{*} defined by

$$
\left(\psi_{V}(v)\right)(\alpha)=\alpha(v) .
$$

for each $\alpha \in V^{*}$.
Prove that for any two vector spaces V, W and any linear $\operatorname{map} T: V \rightarrow W$, we have $\left(T^{*}\right)^{*} \psi_{V}=\psi_{W} T$.
(This is the sense in which ψ is "natural".)

