MAT 247 ASSIGNMENT 9 DUE TUESDAY APRIL 5

- (1) Let $V = \mathbb{Q}$ (i.e. the 1-dimensional vector space over the field of rational numbers). Let H be a non-zero bilinear form on V.
 - (a) Show that we can find a basis v for V such that $[H]_v = [n]$, where n is a square-free integer (a non-zero integer which is not divisible by the square of an integer bigger than 1).
 - (b) Show that such an *n* is unique (in the same sense that the signature of symmetric bilinear form on a real vector space is unique).
- (2) Let V be a vector space and let Ω be a symplectic form on V. Let L, M be two Lagrangian subspaces of V such that

$$L \cap M = 0.$$

- (a) Show that $V = L \oplus M$.
- (b) Define a linear map $T: M \to L^*$ by setting T(v) to be the linear functional defined by $(T(v))(w) = \Omega(v, w)$. Prove that T is an isomorphism.
- (c) Use the above results to find a symplectic basis

$$q_1,\ldots,q_n,p_1,\ldots,p_n$$

for V such that $q_1, \ldots, q_n \in L$ and $p_1, \ldots, p_n \in M$.

(3) Let V, \langle , \rangle be a complex inner product space. We can regard V as a real vector space by just considering scalar multiplication by elements of \mathbb{R} . Define a real bilinear form Ω on V by

$$\Omega(v,w) = Re(\langle v, iw \rangle),$$

where Re denotes the real part of a complex number.

- (a) Show that Ω is a real symplectic form on V.
- (b) Let v_1, \ldots, v_n be a orthonormal basis for V (regarded as a complex inner product space). Show that

$$v_1,\ldots,v_n,iv_1,\ldots,iv_n$$

is a symplectic basis for V (regarded as a real vector space with symplectic form Ω).

(4) Recall that if $T: V \to W$ is a linear map, then there is a linear map $T^*: W^* \to V^*$ which is defined by

$$(T^*(\beta))(v) = \beta(Tv),$$

for $\beta \in W^*$ and $v \in V$. Applying this reasoning twice, we see that there is a linear map $(T^*)^* : (V^*)^* \to (W^*)^*$.

In class, for each vector space V, we defined the isomorphism $\psi_V: V \to (V^*)^*$ by setting $\psi_V(v)$ to be the linear functional on V^* defined by

$$(\psi_V(v))(\alpha) = \alpha(v).$$

 $(\psi_V(v))(\alpha) = \alpha(v).$ for each $\alpha \in V^*$. Prove that for any two vector spaces V, W and any linear map $T: V \to W$, we have $(T^*)^* \psi_V = \psi_W T$.

(This is the sense in which ψ is "natural".)