MAT 247 midterm

Name:

February 15, 2011

- 1. Let V,\langle,\rangle be an inner product space. Let $W\subset V$ be a subspace.
 - (a) Give the definition of W^{\perp} , the orthogonal complement of W.
 - (b) Suppose that $W^{\perp} = V$. Prove that $W = \{0\}$.

- 2. Consider \mathbb{R}^3 with the usual inner product. Let W be the span of (1, 0, 0) and (1, 1, 1).
 - (a) Perform the Gram-Schmidt process to these vectors to find an orthonormal basis for W.
 - (b) Find the orthogonal projection of (0, 0, 1) onto W.

- 3. Let V be a real inner product space.
 - (a) Given the definition of a self-adjoint linear operator on V.
 - (b) Suppose that a linear operator $T: V \to V$ is orthogonally diagonalizable (i.e. there exists an orthonormal basis for V consisting of eigenvectors for T). Show that T is self-adjoint.

- 4. Let V be an inner product space.
 - (a) Give an example of a linear operator $T: V \to V$ such that $\operatorname{null}(T) \neq \operatorname{null}(T^*)$.
 - (b) Show that it is not possible to find an example when T is normal.
 - (c) Show that for any linear operator $T: V \to V$, dim null $(T) = \dim null(T^*)$.

5. Let V, \langle , \rangle be an inner product space and let $T : V \to V$ be a linear operator. Suppose that for all pairs of vectors $v, w \in V, \langle Tv, Tw \rangle = 0$ if and only if $\langle v, w \rangle = 0$ (in other words, T preserves the property of orthogonality). Show that there exists some scalar a such that aT is an isometry.