MAT 247 midterm

Name:

February 15, 2011

1. Let V,\langle,$\rangle be an inner product space. Let W \subset V$ be a subspace.
(a) Give the definition of W^{\perp}, the orthogonal complement of W.
(b) Suppose that $W^{\perp}=V$. Prove that $W=\{0\}$.
2. Consider \mathbb{R}^{3} with the usual inner product. Let W be the span of $(1,0,0)$ and $(1,1,1)$.
(a) Perform the Gram-Schmidt process to these vectors to find an orthonormal basis for W.
(b) Find the orthogonal projection of $(0,0,1)$ onto W.
3. Let V be a real inner product space.
(a) Given the definition of a self-adjoint linear operator on V.
(b) Suppose that a linear operator $T: V \rightarrow V$ is orthogonally diagonalizable (i.e. there exists an orthonormal basis for V consisting of eigenvectors for T). Show that T is self-adjoint.
4. Let V be an inner product space.
(a) Give an example of a linear operator $T: V \rightarrow V$ such that $\operatorname{null}(T) \neq \operatorname{null}\left(T^{*}\right)$.
(b) Show that it is not possible to find an example when T is normal.
(c) Show that for any linear operator $T: V \rightarrow V$, $\operatorname{dim} \operatorname{null}(T)=$ $\operatorname{dim} \operatorname{null}\left(T^{*}\right)$.
5. Let V,\langle,$\rangle be an inner product space and let T: V \rightarrow V$ be a linear operator. Suppose that for all pairs of vectors $v, w \in V,\langle T v, T w\rangle=0$ if and only if $\langle v, w\rangle=0$ (in other words, T preserves the property of orthogonality). Show that there exists some scalar a such that $a T$ is an isometry.
