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1. Let V, 〈, 〉 be an inner product space. Let W ⊂ V be a subspace.

(a) Give the definition of W⊥, the orthogonal complement of W .

(b) Suppose that W⊥ = V . Prove that W = {0}.

Solution:

(a)
W⊥ = {v ∈ V : 〈w, v〉 = 0 for all w ∈ W}

(b) Suppose that w ∈ W . Then, since W⊥ = V , we have 〈v, w〉 = 0
for all v ∈ V . In particular 〈w,w〉 = 0. Thus w = 0.
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2. Consider R
3 with the usual inner product. Let W be the span of (1, 0, 0)

and (1, 1, 1).

(a) Perform the Gram-Schmidt process to these vectors to find an
orthonormal basis for W .

(b) Find the orthogonal projection of (0, 0, 1) onto W .

Solution:

(a) Let w1 = (1, 0, 0), w2 = (1, 1, 1). Then since w1 is already unit
length, we set e1 = w1. Then we define

v2 = w2 − 〈e1, w2〉e1 = (1, 1, 1) − 1(1, 0, 0) = (0, 1, 1)

and we set e2 = v2

||v2|| = 1√
2
(0, 1, 1). Thus e1, e2 is an orthonormal

basis for W .

(b) We compute

v = 〈e1, (0, 0, 1)〉e1+〈e2, (0, 0, 1)〉e2 = 0+
1√
2

1√
2
(0, 1, 1) = (0,

1

2
,
1

2
)

Thus v = (0, 1

2
, 1

2
) is the projection of (0, 0, 1) onto W .
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3. Let V be a real inner product space.

(a) Give the definition of a self-adjoint linear operator on V .

(b) Suppose that a linear operator T : V → V is orthogonally diago-
nalizable (i.e. there exists an orthonormal basis for V consisting
of eigenvectors for T ). Show that T is self-adjoint.

Solution:

(a) A self-adjoint linear operator is a linear operator T : V → V

where T = T ∗.

(b) Choose an orthonormal basis e1, . . . , en for V consisting of eigen-
vectors for T . Consider the matrix

A =
[

T
]

e1,...,en

of T with respect to this basis. Since this is an orthonormal basis,

[

T ∗]
e1,...,en

=
[

T
]∗
e1,...,en

= A∗.

Since this is a basis of eigenvectors, A is a diagonal matrix (with
real entries since we are working with a real vector space) and
so A∗ = A. Thus

[

T ∗]
e1,...,en

= A and so T ∗ = T . Hence T is

self-adjoint.
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4. Let V be an inner product space.

(a) Give an example of a linear operator T : V → V such that
null(T ) 6= null(T ∗).

(b) Show that it is not possible to find an example when T is normal.

(c) Show that for any linear operator T : V → V , dim null(T ) =
dim null(T ∗).

Solution:

(a) Consider V = R
2 and consider the linear operator

T =

[

0 1
0 0

]

Then since the standard basis of R
2 is an orthonormal basis,

T ∗ =

[

0 0
1 0

]

.

A simple computation shows that null(T ) = span(1, 0) and null(T ∗) =
span(0, 1). Thus null(T ) 6= null(T ∗).

(b) If T is normal, then for all v ∈ V .

〈Tv, Tv〉 = 〈T ∗Tv, v〉 = 〈TT ∗v, v〉 = 〈T ∗v, T ∗v〉
and thus ||Tv|| = ||T ∗v||.
Thus ||Tv|| = 0 if and only ||T ∗v|| = 0. Hence v ∈ null(T ) if
and only if v ∈ null(T ∗). Hence null(T ) = null(T ∗) for all normal
operators T .

(c) For any linear operator T ,

dim V = dim null(T ) + dim range(T ).

Also we know that range(T ) = null(T ∗)⊥. Hence

dim V = dim range(T ) + dim null(T ∗).

Combining these two equations, we obtain that dim null(T ) =
dim null(T ∗).
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5. Let V, 〈, 〉 be an inner product space and let T : V → V be a linear
operator. Suppose that for all pairs of vectors v, w ∈ V , 〈Tv, Tw〉 = 0
if and only if 〈v, w〉 = 0 (in other words, T preserves the property of
orthogonality). Show that there exists some scalar a such that aT is
an isometry.

Solution:

First, notice that T is injective, since if Tv = 0, then 〈Tv, Tv〉 = 0, so
〈v, v〉 = 0 by the hypothesis and hence v = 0.

Pick an orthonormal basis e1, . . . , en for V . We want to show that there
exists a scalar a, such that aTe1, . . . , aTen is an orthonormal basis. By
the hypothesis, we see that for all a, and all i 6= j,

〈aTei, aTej〉 = 0.

So it remains to show that we can pick a so that ||aTei|| = 1 for all i.

Pick some i > 1 and consider e1 − ei and e1 + ei. We have

〈e1−ei, e1 +ei〉 = 〈e1, e1〉−〈ei, e1〉+ 〈e1, ei〉−〈ei, ei〉 = 1−0+0−1 = 0

Thus by the hypothesis, 〈T (e1 − ei), T (e1 + ei)〉 = 0. Hence,

0 = 〈Te1 − Tei, T e1 + Tei〉 = 〈Te1, T e1〉 − 〈Tei, T ei〉

since by the hypothesis 〈Te1, T ei〉 = 0. So ||Te1, T e1|| = ||TeiTei|| for
all i.

Since T is injective, ||Te1|| 6= 0. Let

a =
1

||Te1||
.

Then, since ||Te1|| = ||Tei||, we see that ||aTei|| = 1 for all i. Thus
aTe1, . . . , aTen is an orthonormal basis and hence aT is an isometry.
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