# MAT 247 midterm 

## Name:

February 15, 2011

1. Let $V,\langle$,$\rangle be an inner product space. Let W \subset V$ be a subspace.
(a) Give the definition of $W^{\perp}$, the orthogonal complement of $W$.
(b) Suppose that $W^{\perp}=V$. Prove that $W=\{0\}$.

## Solution:

(a)

$$
W^{\perp}=\{v \in V:\langle w, v\rangle=0 \text { for all } w \in W\}
$$

(b) Suppose that $w \in W$. Then, since $W^{\perp}=V$, we have $\langle v, w\rangle=0$ for all $v \in V$. In particular $\langle w, w\rangle=0$. Thus $w=0$.
2. Consider $\mathbb{R}^{3}$ with the usual inner product. Let $W$ be the span of $(1,0,0)$ and $(1,1,1)$.
(a) Perform the Gram-Schmidt process to these vectors to find an orthonormal basis for $W$.
(b) Find the orthogonal projection of $(0,0,1)$ onto $W$.

## Solution:

(a) Let $w_{1}=(1,0,0), w_{2}=(1,1,1)$. Then since $w_{1}$ is already unit length, we set $e_{1}=w_{1}$. Then we define

$$
v_{2}=w_{2}-\left\langle e_{1}, w_{2}\right\rangle e_{1}=(1,1,1)-1(1,0,0)=(0,1,1)
$$

and we set $e_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{1}{\sqrt{2}}(0,1,1)$. Thus $e_{1}, e_{2}$ is an orthonormal basis for $W$.
(b) We compute

$$
v=\left\langle e_{1},(0,0,1)\right\rangle e_{1}+\left\langle e_{2},(0,0,1)\right\rangle e_{2}=0+\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}(0,1,1)=\left(0, \frac{1}{2}, \frac{1}{2}\right)
$$

Thus $v=\left(0, \frac{1}{2}, \frac{1}{2}\right)$ is the projection of $(0,0,1)$ onto $W$.
3. Let $V$ be a real inner product space.
(a) Give the definition of a self-adjoint linear operator on $V$.
(b) Suppose that a linear operator $T: V \rightarrow V$ is orthogonally diagonalizable (i.e. there exists an orthonormal basis for $V$ consisting of eigenvectors for $T$ ). Show that $T$ is self-adjoint.

## Solution:

(a) A self-adjoint linear operator is a linear operator $T: V \rightarrow V$ where $T=T^{*}$.
(b) Choose an orthonormal basis $e_{1}, \ldots, e_{n}$ for $V$ consisting of eigenvectors for $T$. Consider the matrix

$$
A=[T]_{e_{1}, \ldots, e_{n}}
$$

of $T$ with respect to this basis. Since this is an orthonormal basis,

$$
\left[T^{*}\right]_{e_{1}, \ldots, e_{n}}=[T]_{e_{1}, \ldots, e_{n}}^{*}=A^{*}
$$

Since this is a basis of eigenvectors, $A$ is a diagonal matrix (with real entries since we are working with a real vector space) and so $A^{*}=A$. Thus $\left[T^{*}\right]_{e_{1}, \ldots, e_{n}}=A$ and so $T^{*}=T$. Hence $T$ is self-adjoint.
4. Let $V$ be an inner product space.
(a) Give an example of a linear operator $T: V \rightarrow V$ such that $\operatorname{null}(T) \neq \operatorname{null}\left(T^{*}\right)$.
(b) Show that it is not possible to find an example when $T$ is normal.
(c) Show that for any linear operator $T: V \rightarrow V, \operatorname{dim} \operatorname{null}(T)=$ $\operatorname{dim} \operatorname{null}\left(T^{*}\right)$.

## Solution:

(a) Consider $V=\mathbb{R}^{2}$ and consider the linear operator

$$
T=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Then since the standard basis of $\mathbb{R}^{2}$ is an orthonormal basis,

$$
T^{*}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

A simple computation shows that $\operatorname{null}(T)=\operatorname{span}(1,0)$ and $\operatorname{null}\left(T^{*}\right)=$ $\operatorname{span}(0,1)$. Thus null $(T) \neq \operatorname{null}\left(T^{*}\right)$.
(b) If $T$ is normal, then for all $v \in V$.

$$
\langle T v, T v\rangle=\left\langle T^{*} T v, v\right\rangle=\left\langle T T^{*} v, v\right\rangle=\left\langle T^{*} v, T^{*} v\right\rangle
$$

and thus $\|T v\|=\left\|T^{*} v\right\|$.
Thus $\|T v\|=0$ if and only $\left\|T^{*} v\right\|=0$. Hence $v \in \operatorname{null}(T)$ if and only if $v \in \operatorname{null}\left(T^{*}\right)$. Hence $\operatorname{null}(T)=\operatorname{null}\left(T^{*}\right)$ for all normal operators $T$.
(c) For any linear operator $T$,

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{null}(T)+\operatorname{dim} \operatorname{range}(T)
$$

Also we know that $\operatorname{range}(T)=\operatorname{null}\left(T^{*}\right)^{\perp}$. Hence

$$
\operatorname{dim} V=\operatorname{dim} \operatorname{range}(T)+\operatorname{dim} \operatorname{null}\left(T^{*}\right)
$$

Combining these two equations, we obtain that $\operatorname{dim} \operatorname{null}(T)=$ $\operatorname{dim} \operatorname{null}\left(T^{*}\right)$.
5. Let $V,\langle$,$\rangle be an inner product space and let T: V \rightarrow V$ be a linear operator. Suppose that for all pairs of vectors $v, w \in V,\langle T v, T w\rangle=0$ if and only if $\langle v, w\rangle=0$ (in other words, $T$ preserves the property of orthogonality). Show that there exists some scalar $a$ such that $a T$ is an isometry.

## Solution:

First, notice that $T$ is injective, since if $T v=0$, then $\langle T v, T v\rangle=0$, so $\langle v, v\rangle=0$ by the hypothesis and hence $v=0$.

Pick an orthonormal basis $e_{1}, \ldots, e_{n}$ for $V$. We want to show that there exists a scalar $a$, such that $a T e_{1}, \ldots, a T e_{n}$ is an orthonormal basis. By the hypothesis, we see that for all $a$, and all $i \neq j$,

$$
\left\langle a T e_{i}, a T e_{j}\right\rangle=0 .
$$

So it remains to show that we can pick $a$ so that $\left\|a T e_{i}\right\|=1$ for all $i$.
Pick some $i>1$ and consider $e_{1}-e_{i}$ and $e_{1}+e_{i}$. We have
$\left\langle e_{1}-e_{i}, e_{1}+e_{i}\right\rangle=\left\langle e_{1}, e_{1}\right\rangle-\left\langle e_{i}, e_{1}\right\rangle+\left\langle e_{1}, e_{i}\right\rangle-\left\langle e_{i}, e_{i}\right\rangle=1-0+0-1=0$
Thus by the hypothesis, $\left\langle T\left(e_{1}-e_{i}\right), T\left(e_{1}+e_{i}\right)\right\rangle=0$. Hence,

$$
0=\left\langle T e_{1}-T e_{i}, T e_{1}+T e_{i}\right\rangle=\left\langle T e_{1}, T e_{1}\right\rangle-\left\langle T e_{i}, T e_{i}\right\rangle
$$

since by the hypothesis $\left\langle T e_{1}, T e_{i}\right\rangle=0$. So $\left\|T e_{1}, T e_{1}\right\|=\left\|T e_{i} T e_{i}\right\|$ for all $i$.
Since $T$ is injective, $\left\|T e_{1}\right\| \neq 0$. Let

$$
a=\frac{1}{\left\|T e_{1}\right\|}
$$

Then, since $\left\|T e_{1}\right\|=\left\|T e_{i}\right\|$, we see that $\left\|a T e_{i}\right\|=1$ for all $i$. Thus $a T e_{1}, \ldots, a T e_{n}$ is an orthonormal basis and hence $a T$ is an isometry.

