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Assume that all fields are characteristic 0 (i.e. 1 + · · ·+ 1 6= 0), for example
F = Q,R,C. Assume also that all vector spaces are finite dimensional.

1 Dual spaces

If V is a vector space, then V ∗ = L(V,F) is defined to be the space of linear
maps from V to F.

If v1, . . . , vn is a basis for V , then we define αi ∈ V ∗ for i = 1, . . . , n, by
setting

αi(vj) =

{

1, if i = j

0, otherwise

Proposition 1.1. α1, . . . , αn forms a basis for V ∗ (called the dual basis).

In particular, this shows that V and V ∗ are vector spaces of the same di-
mension. However, there is no natural way to choose an isomorphism between
them, unless we pick some additional structure on V (such as a basis or a non-
degenerate bilinear form).

On the other hand, we can construct an isomorphism ψ from V to (V ∗)∗ as
follows. If v ∈ V , then we define ψ(v) to be the element of V ∗ given by

(ψ(v))(α) = α(v)

for all α ∈ V ∗. In other words, given a guy in V , we tell him to eat elements in
V ∗ by allowing himself to be eaten.

Proposition 1.2. ψ is an isomorphism.

Proof. Since V and (V ∗)∗ have the same dimension, it is enough to show that
ψ is injective.

Suppose that v ∈ V , v 6= 0, and ψ(v) = 0. We wish to derive a contradiction.
Since v 6= 0, we can extend v to a basis v1 = v, v2, . . . , vn for V . Then let

α1 defined as above. Then α1(v) = 1 6= 0 and so we have a contradiction. Thus
ψ is injective as desired.

From this proposition, we derive the following useful result.
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Corollary 1.3. Let α1, . . . , αn be a basis for V ∗. Then there exists a basis
v1, . . . , vn for V such that

αi(vj) =

{

1, if i = j

0, otherwise

for all i, j.

Proof. Let w1, . . . , wn be the dual basis to α1, . . . , αn in (V ∗)∗. Since ψ is
invertible, ψ−1 exists. Define vi = ψ−1(wi). Since w1, . . . , wn is a basis, so
is v1, . . . , vn. Checking through the definitions shows that v1, . . . , vn have the
desired properties.

2 Bilinear forms

Let V be a vector space. We denote the set of all bilinear forms on V by (V ∗)⊗2.
We have already seen that this set is a vector space.

Similarly, we have the subspaces Sym2V ∗ and Λ2V ∗ of symmetric and skew-
symmetric bilinear forms.

Proposition 2.1. (V ∗)⊗2 = Sym2V ∗ ⊕ Λ2V ∗

Proof. Clearly, Sym2V ∗ ∩ Λ2V ∗ = 0, so it suffices to show that any bilinear
form is the sum of a symmetric and skew-symmetric bilinear form. Let H be a
bilinear form. Let Ĥ be the bilinear form defined by

Ĥ(v1, v2) = H(v2, v1)

Then (H + Ĥ)/2 is symmetric and (H − Ĥ)/2 is skew-symmetric. Hence H =
(H+Ĥ)/2+(H−Ĥ)/2 is the sum of a symmetric and skew-symmetric form.

If α, β ∈ V ∗, then we can define a bilinear form α⊗ β as follows.

(α⊗ β)(v1, v2) = α(v1)β(v2)

for v1, v2 ∈ V .
We can also define a symmetric bilinear form α · β by

(α · β)(v1, v2) = α(v1)β(v2) + α(v2)β(v1)

and a skew-symmetric bilinear from α ∧ β by

(α ∧ β)(v1, v2) = α(v1)β(v2) − α(v2)β(v1)

These operations are linear in each variable. In other words

α⊗ (β + γ) = α⊗ β + α⊗ γ

and similar for the other operations.
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Example 2.2. Take V = R2. Let α1, α2 be the standard dual basis for V ∗, so
that

α1(x1, x2) = x1, α2(x1, x2) = x2

Then α1 ⊗ α2 is given by

(α1 ⊗ α2)((x1, x2), (y1, y2)) = x1y2

Similarly α1 ∧ α2 is the standard symplectic form on R2, given by

(α1 ∧ α2)((x1, x2), (y1, y2)) = x1y2 − x2y1

α1 · α2 is the symmetric bilinear form of signature (1, 1) on R2 given by

(α1 · α2)((x1, x2), (y1, y2)) = x1y2 + x2y1

The standard positive definite bilinear form on R2 (the dot product) is given
by α1 · α1 + α2 · α2.

3 Multilinear forms

Let V be a vector space.
We can consider k-forms on V , which are maps

H : V × · · · × V → F

which are linear in each argument. In other words

H(av1, . . . , vk) = aH(v1, . . . , vk)

H(v + w, v2, . . . , vk) = H(v, v2, . . . , vk) +H(w, v2, . . . , vk)

for a ∈ F and v, w, v1, . . . , vk ∈ V , and similarly in all other arguments.
H is called symmetric if for each i, and all v1, . . . , vk,

H(v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vn) = H(v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn)

H is called skew-symmetric (or alternating) if for each i, and all v1, . . . , vk,

H(v1, . . . , vi−1, vi, vi+1, vi+2, . . . , vn) = −H(v1, . . . , vi−1, vi+1, vi, vi+2, . . . , vn)

The vector space of all k-forms is denoted (V ∗)⊗k and the subspaces of
symmetric and skew-symmetric forms are denote SymkV ∗ and ΛkV ∗.

3.1 Permutations

Let Sk denote the set of bijections from {1, . . . , k} to itself (called a permuta-
tion). Sk is also called the symmetric group. It has k! elements. The permu-
tations occuring in the definition of symmetric and skew-symmetric forms are
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called simple transpositions (they just swap i and i + 1). Every permutation
can be written as a composition of simple transpositions.

From this it immediately follows that if H is symmetric and if σ ∈ Sk, then

H(v1, . . . , vk) = H(vσ(1), · · · , vσ(n))

There is a function ε : Sk → {1,−1} called the sign of a permutation, which
is defined by the conditions that ε(σ) = −1 if σ is a simple transposition and

ε(σ1σ2) = ε(σ1)ε(σ2)

for all σ1, σ2 ∈ Sk.
The sign of a permutation gives us the behaviour of skew-symmetric k-forms

under permuting the arguments. If H is skew-symmetric and if σ ∈ Sk, then

H(v1, . . . , vk) = ε(σ)H(vσ(1), · · · , vσ(n))

3.2 Iterated tensors, dots, and wedges

If H is a k− 1-form and α ∈ V ∗, then we define H ⊗α to be the k-form defined
by

(H ⊗ α)(v1, . . . , vk) = H(v1, . . . , vk−1)α(vk)

Similarly, if H is a symmetric k − 1-form and α ∈ V ∗, then we define H · α
to be the k-form defined by

(H ⊗ α)(v1, . . . , vk) = H(v1, . . . , vk−1)α(vk) + · · · +H(v2, . . . , vk)α(v1)

It is easy to see that H · α is a symmetric k-form.
Similarly, if H is a skew-symmetric k − 1-form and α ∈ V ∗, then we define

H ∧ α to be the k-form defined by

(H ⊗ α)(v1, . . . , vk) = H(v1, . . . , vk−1)α(vk) − · · · ±H(v2, . . . , vk)α(v1)

It is easy to see that H ∧ α is a skew-symmetric k-form.
From these definitions, we see that if α1, . . . , αk ∈ V ∗, then we can iteratively

define
α1 ⊗ · · · ⊗ αk := ((α1 ⊗ α2) ⊗ α3) ⊗ · · · ⊗ αk

and similar definitions for α1 · · ·αk and α1 ∧ · · · ∧ αk.
When we expand out the definitions of α1 · · ·αk and α1 ∧ · · · ∧αk there will

be k! terms, one for each element of Sk.
For any σ ∈ Sk, we have

α1 · · ·αk = ασ(1) · · ·ασ(k)

and
α1 ∧ · · · ∧ αk = ε(σ)ασ(1) ∧ · · · ∧ ασ(k)

The later property implies that α1 ∧ · · · ∧ αk = 0 if αi = αj for some i 6= j.
The following result is helpful in understanding these iterated wedges.
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Theorem 3.1. Let α1, . . . , αk ∈ V ∗.

α1 ∧ · · · ∧ αk = 0 if and only if α1, . . . , αk are linearly dependent

Proof. Suppose that α1, . . . , αk is linearly dependent. Then there exists x1, . . . , xk

such that
x1α1 + · · · + xkαk = 0

and not all x1, . . . , xk are zero. Assume that xk 6= 0. Let H = α1 ∧ · · · ∧ αk−1

and let us apply H∧ to both sides of this equation. Using the above results and
the linearity of ∧, we deduce that

xkα1 ∧ · · · ∧ αk−1 ∧ αk = 0

which implies that α1 ∧ · · · ∧ αk = 0 as desired.
For the converse, suppose that α1, . . . , αk are linearly independent. Then we

can extend α1, . . . , αk to a basis α1, . . . , αn for V ∗. Let v1, . . . , vn be the dual
basis for V . Then

(α1 ∧ · · · ∧ αk)(v1, . . . , vk) = 1

and so α1 ∧ · · · ∧ αk 6= 0.

The same method of proof can be used to prove the following result.

Theorem 3.2. Let v1, . . . , vk ∈ V . Then there exists H ∈ ΛkV ∗ such that
H(v1, . . . , vk) 6= 0 if and only if v1, . . . , vk are linearly independent.

In particular this theorem shows that ΛkV ∗ = 0 if k > dimV .

3.3 Bases and dimension

We will now describe bases for our vector spaces of k-forms.

Theorem 3.3. Let α1, . . . , αn be a basis for V ∗.

(i) {αi1 ⊗ · · · ⊗ αik
}1≤i1,...,ik≤n is a basis for (V ∗)⊗k.

(ii) {αi1 · · ·αik
}1≤i1≤···≤ik≤n is a basis for SymkV ∗.

(iii) {αi1 ∧ · · · ∧ αik
}1≤i1<···<ik≤n is a basis for ΛkV ∗.

Proof. We give the proof for the case of (V ∗)⊗k as the other cases are similar.
So simplify the notation, let us assume that k = 2.

Let us first show that every bilinear form is a linear combination of {αi⊗αj}.
Let H be a bilinear form. Let v1, . . . , vn be the basis of V dual to α1, . . . , αn.
Let cij = H(vi, vj) for each i, j. We claim that

H =
n

∑

i=1

n
∑

j=1

cijαi ⊗ αj
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Since both sides are bilinear forms, it suffices to check that they agree on all
pairs (vk, vl) of basis vectors. By definition H(vk, vl) = ckl. On the other hand,





n
∑

i=1

n
∑

j=1

cijαi ⊗ αj



 (vk, vl) =

n
∑

i=1

n
∑

j=1

cijαi(vk)αj(vl) = ckl

and so the claim follows.
Now to see that {αi ⊗ αj} is a linearly independent set, just note that if

n
∑

i=1

n
∑

j=1

cijαi ⊗ αj = 0,

then by evaluating both sides on (vi, vj), we see that cij = 0 for all i, j.

Example 3.4. Take n = 2, k = 2. Then our bases are

α1 ⊗ α1, α1 ⊗ α2, α2 ⊗ α1, α2 ⊗ α2

and
α1 · α1, α1 · α2, α2 · α2

and
α1 ∧ α2

Corollary 3.5. The dimension of (V ∗)⊗k is nk, the dimension of SymkV ∗ is
(

n+k−1
k

)

and the dimension of ΛkV ∗ is
(

n

k

)

.
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