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Assume that all fields are characteristic 0 (i.e. 14 ---+ 1 # 0), for example
F=Q,R,C. Assume also that all vector spaces are finite dimensional.

1 Dual spaces

If V is a vector space, then V* = L(V,F) is defined to be the space of linear
maps from V to F.
If v1,...,v, is a basis for V, then we define o; € V* for i = 1,...,n, by

setting
1, ifi=j
a;(vy) =
i(vs) {O,otherwise
Proposition 1.1. «1,...,q, forms a basis for V* (called the dual basis).

In particular, this shows that V' and V* are vector spaces of the same di-
mension. However, there is no natural way to choose an isomorphism between
them, unless we pick some additional structure on V' (such as a basis or a non-
degenerate bilinear form).

On the other hand, we can construct an isomorphism ¢ from V to (V*)* as
follows. If v € V, then we define ¥ (v) to be the element of V* given by

(¥ (v)(a) = a(v)

for all & € V*. In other words, given a guy in V, we tell him to eat elements in
V* by allowing himself to be eaten.

Proposition 1.2. 9 is an isomorphism.
Proof. Since V' and (V*)* have the same dimension, it is enough to show that

1) is injective.
Suppose that v € V, v # 0, and ¢(v) = 0. We wish to derive a contradiction.

Since v # 0, we can extend v to a basis v; = v, v, ..., v, for V. Then let
aq defined as above. Then a;(v) = 1 # 0 and so we have a contradiction. Thus
1 is injective as desired. O

From this proposition, we derive the following useful result.



Corollary 1.3. Let ay,...,a, be a basis for V*. Then there exists a basis
V1,...,0, for V such that

ozi(vj):{l’ ifi=j

0, otherwise

for alli,j.

Proof. Let wyq,...,w, be the dual basis to ai,...,a, in (V*)*. Since v is
invertible, 1 ~! exists. Define v; = 1 ~(w;). Since ws,...,w, is a basis, so
is v1,...,v,. Checking through the definitions shows that vy, ..., v, have the
desired properties. O

2 Bilinear forms

Let V be a vector space. We denote the set of all bilinear forms on V by (V*)®2.
We have already seen that this set is a vector space.

Similarly, we have the subspaces Sym?V* and A2V* of symmetric and skew-
symmetric bilinear forms.

Proposition 2.1. (V*)®2 = Sym?2V* @ A2V*

Proof. Clearly, Sym?V* N A2V* = 0, so it suffices to show that any bilinear
form is the sum of a symmetric and skew-symmetric bilinear form. Let H be a
bilinear form. Let H be the bilinear form defined by

H(vy,v9) = H(va,v7)

Then (H + H)/2 is symmetric and (H — H)/2 is skew-symmetric. Hence H =
(H+H)/2+(H—H)/2 is the sum of a symmetric and skew-symmetric form. [

If a, 8 € V*, then we can define a bilinear form a ® (3 as follows.
(a ® B)(v1,v2) = a(v1)B(v2)

for vi,v9 € V.
We can also define a symmetric bilinear form « - 3 by

(a-B)(v1,v2) = a(v1)B(v2) + e(v2)B(v1)
and a skew-symmetric bilinear from a A 3 by
(a A B)(v1,v2) = afvr)B(v2) — a(v2)B(v1)
These operations are linear in each variable. In other words
a®(B+y)=a®@bf+taxy

and similar for the other operations.



Example 2.2. Take V = R2. Let a1, as be the standard dual basis for V*, so
that
041(11,502) = 1, 062($1,$2) = X2

Then oy ® as is given by
(a1 @ az)((w1,22), (y1,Y2)) = T1Y2
Similarly a; A as is the standard symplectic form on R?, given by
(a1 A az)((@1,22), (y1,42)) = 12 — 2201
aq - ag is the symmetric bilinear form of signature (1,1) on R? given by
(a1 - a2)((z1,22), (y1,¥2)) = T1y2 + 2201
The standard positive definite bilinear form on R? (the dot product) is given
by a7 - a1 + as - as.
3 Multilinear forms

Let V be a vector space.
We can consider k-forms on V', which are maps

H:Vx.---xV—>F
which are linear in each argument. In other words

H(avy,...,v;) = aH(v1,...,0%)
Hw+4w,va,...,v5) = H(w,va,...,05) + H(w,va,...,v5)

for a € F and v, w,v1,...,v; € V, and similarly in all other arguments.
H is called symmetric if for each 4, and all vy, ..., v,
H(’Ul, ey Ui—1,V5, Vi1, UVg425 - -« ,’Un) = H(’Ul, ooy Ui—1, V541, U3, U425 - -« ,’Un)
H is called skew-symmetric (or alternating) if for each 4, and all vy, ..., vg,
H(Ul, e ,Uifl,’l]i,’l)i+1,'l}i+2, e 7’Un) = —H(’Ul, e ,’l)i,l,’l}iJrl,’Ui,UiJrQ, e ,’Un)

The vector space of all k-forms is denoted (V*)®* and the subspaces of
symmetric and skew-symmetric forms are denote Sym*FV* and AFV*.

3.1 Permutations

Let Sy denote the set of bijections from {1,...,k} to itself (called a permuta-
tion). Sy is also called the symmetric group. It has k! elements. The permu-
tations occuring in the definition of symmetric and skew-symmetric forms are



called simple transpositions (they just swap ¢ and i + 1). Every permutation
can be written as a composition of simple transpositions.
From this it immediately follows that if H is symmetric and if o € Si, then

H(Uly ) Uk) = H(Ua(l)v e 7va(n))
There is a function € : Sy, — {1, —1} called the sign of a permutation, which
is defined by the conditions that () = —1 if o is a simple transposition and
6(0'10'2) = 5(01)6(02)

for all 01,09 € Sj.
The sign of a permutation gives us the behaviour of skew-symmetric k-forms
under permuting the arguments. If H is skew-symmetric and if o € S, then

H(’Ul, . ,'Uk) = E(U)H<’Uo'(1)a e 7U(T(TL))

3.2 Iterated tensors, dots, and wedges

If H is a kK — 1-form and o € V*, then we define H ® « to be the k-form defined
by
(H ® a)(vla s 7Uk) = H(Ula s 7Uk71)a(vk)
Similarly, if H is a symmetric £ — 1-form and o € V*, then we define H - «
to be the k-form defined by

(H® a)(v1,...,05) = Hvp,...,v—1)a(vg) + -+ + H(va, ..., vk)a(v1)

It is easy to see that H - « is a symmetric k-form.
Similarly, if H is a skew-symmetric k — 1-form and a € V*, then we define
H A a to be the k-form defined by

(H®@a)(vi,...,vx) = H(vi, ... vp-1)a(vg) — - £ H(va, ..., vp)a(vr)

It is easy to see that H A « is a skew-symmetric k-form.
From these definitions, we see that if aq, ..., a; € V*, then we can iteratively
define
a1 Q- Qo = ((a1®a2)®a3)®--~®ak

and similar definitions for oy -+ -y and ag A -+ A ap.

When we expand out the definitions of a;y -+ - a and aq A - -+ A ay, there will
be k! terms, one for each element of S.

For any o € Sj, we have

oy - = ao(l) "'aa'(k)

and
ar N Nag :(-:(J)Oég(l) A N Qg

The later property implies that ay A -+ A oy = 0 if oy = 5 for some 7 # j.
The following result is helpful in understanding these iterated wedges.



Theorem 3.1. Let aq,...,qr € V*.

ar N+ ANag =0 if and only if ay,...,ar are linearly dependent
Proof. Suppose that a, ..., «ax is linearly dependent. Then there exists x1, ..., zg
such that

1oy + -+ 2o =0

and not all x1,...,x, are zero. Assume that xx # 0. Let H = a1 A+ A ag_1
and let us apply HA to both sides of this equation. Using the above results and
the linearity of A, we deduce that

Tror AN Nag_1 ANag =0

which implies that a1 A --- A ai = 0 as desired.

For the converse, suppose that aq, ..., a are linearly independent. Then we
can extend ayq,...,a; to a basis aq,...,qa, for V*. Let vq,...,v, be the dual
basis for V. Then

(ozl/\-n/\ak)(vl,...,vk) =1

and so a3 A -+ A ag # 0. O
The same method of proof can be used to prove the following result.

Theorem 3.2. Let vy,...,v; € V. Then there exists H € AFV* such that
H(vy,...,v,) #0 if and only if v, ..., v are linearly independent.

In particular this theorem shows that A¥V* = 0 if k > dimV.

3.3 Bases and dimension
We will now describe bases for our vector spaces of k-forms.
Theorem 3.3. Let aq,...,qa, be a basis for V*.
(i) {ai, ® @ iy Y1<iy...ig<n 18 a basis for (V*)k,
(i3) {ui, = @iy b1<iy<o-<ip<n 08 a basis for SymFV*.
(i15) {viy A+ A iy 1<iy<o<ip<n 5 a basis for AFV*.

Proof. We give the proof for the case of (V*)®* as the other cases are similar.
So simplify the notation, let us assume that k = 2.

Let us first show that every bilinear form is a linear combination of {a; ® ¢ }.
Let H be a bilinear form. Let vq,...,v, be the basis of V dual to ay,...,a,.
Let ¢;; = H(v;,v;) for each ¢, j. We claim that

n n
H = E E cijai®ozj
i=1 j=1



Since both sides are bilinear forms, it suffices to check that they agree on all
pairs (v, v;) of basis vectors. By definition H (v, v;) = ¢k On the other hand,

n n

n n
ZZCijai Q@ a; | (vg,v) = ZZcijai(vk)aj(vl) = Cu

i=1 j=1 i=1 j=1

and so the claim follows.
Now to see that {a; ® ;} is a linearly independent set, just note that if

n n
DD cyoi®a; =0,
i=1 j=1
then by evaluating both sides on (v;,v;), we see that ¢;; = 0 for all ¢, j. O

Example 3.4. Take n = 2,k = 2. Then our bases are
o1 @ ar, 01 @ ag, s @ o, g Q Qg

and
Qq - Q1,01 - Qg, 0 - Q2

and
a1 N\ Qo

Corollary 3.5. The dimension of (V*)®F is n*, the dimension of Sym*V* is
("ﬂlfl) and the dimension of A*V* is (})).



