Multilinear forms

Joel Kamnitzer

April 1, 2011

Assume that all fields are characteristic 0 (i.e. $1+\cdots+1 \neq 0$), for example $\mathbb{F}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$. Assume also that all vector spaces are finite dimensional.

1 Dual spaces

If V is a vector space, then $V^{*}=L(V, \mathbb{F})$ is defined to be the space of linear maps from V to \mathbb{F}.

If v_{1}, \ldots, v_{n} is a basis for V, then we define $\alpha_{i} \in V^{*}$ for $i=1, \ldots, n$, by setting

$$
\alpha_{i}\left(v_{j}\right)=\left\{\begin{array}{l}
1, \text { if } i=j \\
0, \text { otherwise }
\end{array}\right.
$$

Proposition 1.1. $\alpha_{1}, \ldots, \alpha_{n}$ forms a basis for V^{*} (called the dual basis).
In particular, this shows that V and V^{*} are vector spaces of the same dimension. However, there is no natural way to choose an isomorphism between them, unless we pick some additional structure on V (such as a basis or a nondegenerate bilinear form).

On the other hand, we can construct an isomorphism ψ from V to $\left(V^{*}\right)^{*}$ as follows. If $v \in V$, then we define $\psi(v)$ to be the element of V^{*} given by

$$
(\psi(v))(\alpha)=\alpha(v)
$$

for all $\alpha \in V^{*}$. In other words, given a guy in V, we tell him to eat elements in V^{*} by allowing himself to be eaten.

Proposition 1.2. ψ is an isomorphism.
Proof. Since V and $\left(V^{*}\right)^{*}$ have the same dimension, it is enough to show that ψ is injective.

Suppose that $v \in V, v \neq 0$, and $\psi(v)=0$. We wish to derive a contradiction.
Since $v \neq 0$, we can extend v to a basis $v_{1}=v, v_{2}, \ldots, v_{n}$ for V. Then let α_{1} defined as above. Then $\alpha_{1}(v)=1 \neq 0$ and so we have a contradiction. Thus ψ is injective as desired.

From this proposition, we derive the following useful result.

Corollary 1.3. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for V^{*}. Then there exists a basis v_{1}, \ldots, v_{n} for V such that

$$
\alpha_{i}\left(v_{j}\right)=\left\{\begin{array}{l}
1, \text { if } i=j \\
0, \text { otherwise }
\end{array}\right.
$$

for all i, j.
Proof. Let w_{1}, \ldots, w_{n} be the dual basis to $\alpha_{1}, \ldots, \alpha_{n}$ in $\left(V^{*}\right)^{*}$. Since ψ is invertible, ψ^{-1} exists. Define $v_{i}=\psi^{-1}\left(w_{i}\right)$. Since w_{1}, \ldots, w_{n} is a basis, so is v_{1}, \ldots, v_{n}. Checking through the definitions shows that v_{1}, \ldots, v_{n} have the desired properties.

2 Bilinear forms

Let V be a vector space. We denote the set of all bilinear forms on V by $\left(V^{*}\right)^{\otimes 2}$. We have already seen that this set is a vector space.

Similarly, we have the subspaces $S y m^{2} V^{*}$ and $\Lambda^{2} V^{*}$ of symmetric and skewsymmetric bilinear forms.

Proposition 2.1. $\left(V^{*}\right)^{\otimes 2}=\operatorname{Sym}^{2} V^{*} \oplus \Lambda^{2} V^{*}$
Proof. Clearly, $S y m^{2} V^{*} \cap \Lambda^{2} V^{*}=0$, so it suffices to show that any bilinear form is the sum of a symmetric and skew-symmetric bilinear form. Let H be a bilinear form. Let \hat{H} be the bilinear form defined by

$$
\hat{H}\left(v_{1}, v_{2}\right)=H\left(v_{2}, v_{1}\right)
$$

Then $(H+\hat{H}) / 2$ is symmetric and $(H-\hat{H}) / 2$ is skew-symmetric. Hence $H=$ $(H+\hat{H}) / 2+(H-\hat{H}) / 2$ is the sum of a symmetric and skew-symmetric form.

If $\alpha, \beta \in V^{*}$, then we can define a bilinear form $\alpha \otimes \beta$ as follows.

$$
(\alpha \otimes \beta)\left(v_{1}, v_{2}\right)=\alpha\left(v_{1}\right) \beta\left(v_{2}\right)
$$

for $v_{1}, v_{2} \in V$.
We can also define a symmetric bilinear form $\alpha \cdot \beta$ by

$$
(\alpha \cdot \beta)\left(v_{1}, v_{2}\right)=\alpha\left(v_{1}\right) \beta\left(v_{2}\right)+\alpha\left(v_{2}\right) \beta\left(v_{1}\right)
$$

and a skew-symmetric bilinear from $\alpha \wedge \beta$ by

$$
(\alpha \wedge \beta)\left(v_{1}, v_{2}\right)=\alpha\left(v_{1}\right) \beta\left(v_{2}\right)-\alpha\left(v_{2}\right) \beta\left(v_{1}\right)
$$

These operations are linear in each variable. In other words

$$
\alpha \otimes(\beta+\gamma)=\alpha \otimes \beta+\alpha \otimes \gamma
$$

and similar for the other operations.

Example 2.2. Take $V=\mathbb{R}^{2}$. Let α_{1}, α_{2} be the standard dual basis for V^{*}, so that

$$
\alpha_{1}\left(x_{1}, x_{2}\right)=x_{1}, \alpha_{2}\left(x_{1}, x_{2}\right)=x_{2}
$$

Then $\alpha_{1} \otimes \alpha_{2}$ is given by

$$
\left(\alpha_{1} \otimes \alpha_{2}\right)\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{2}
$$

Similarly $\alpha_{1} \wedge \alpha_{2}$ is the standard symplectic form on \mathbb{R}^{2}, given by

$$
\left(\alpha_{1} \wedge \alpha_{2}\right)\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{2}-x_{2} y_{1}
$$

$\alpha_{1} \cdot \alpha_{2}$ is the symmetric bilinear form of signature $(1,1)$ on \mathbb{R}^{2} given by

$$
\left(\alpha_{1} \cdot \alpha_{2}\right)\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=x_{1} y_{2}+x_{2} y_{1}
$$

The standard positive definite bilinear form on \mathbb{R}^{2} (the dot product) is given by $\alpha_{1} \cdot \alpha_{1}+\alpha_{2} \cdot \alpha_{2}$.

3 Multilinear forms

Let V be a vector space.
We can consider k-forms on V, which are maps

$$
H: V \times \cdots \times V \rightarrow \mathbb{F}
$$

which are linear in each argument. In other words

$$
\begin{aligned}
H\left(a v_{1}, \ldots, v_{k}\right) & =a H\left(v_{1}, \ldots, v_{k}\right) \\
H\left(v+w, v_{2}, \ldots, v_{k}\right) & =H\left(v, v_{2}, \ldots, v_{k}\right)+H\left(w, v_{2}, \ldots, v_{k}\right)
\end{aligned}
$$

for $a \in \mathbb{F}$ and $v, w, v_{1}, \ldots, v_{k} \in V$, and similarly in all other arguments.
H is called symmetric if for each i, and all v_{1}, \ldots, v_{k},

$$
H\left(v_{1}, \ldots, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{n}\right)=H\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, v_{i}, v_{i+2}, \ldots, v_{n}\right)
$$

H is called skew-symmetric (or alternating) if for each i, and all v_{1}, \ldots, v_{k},

$$
H\left(v_{1}, \ldots, v_{i-1}, v_{i}, v_{i+1}, v_{i+2}, \ldots, v_{n}\right)=-H\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, v_{i}, v_{i+2}, \ldots, v_{n}\right)
$$

The vector space of all k-forms is denoted $\left(V^{*}\right)^{\otimes k}$ and the subspaces of symmetric and skew-symmetric forms are denote $S y m^{k} V^{*}$ and $\Lambda^{k} V^{*}$.

3.1 Permutations

Let S_{k} denote the set of bijections from $\{1, \ldots, k\}$ to itself (called a permutation). S_{k} is also called the symmetric group. It has k ! elements. The permutations occuring in the definition of symmetric and skew-symmetric forms are
called simple transpositions (they just swap i and $i+1$). Every permutation can be written as a composition of simple transpositions.

From this it immediately follows that if H is symmetric and if $\sigma \in S_{k}$, then

$$
H\left(v_{1}, \ldots, v_{k}\right)=H\left(v_{\sigma(1)}, \cdots, v_{\sigma(n)}\right)
$$

There is a function $\varepsilon: S_{k} \rightarrow\{1,-1\}$ called the sign of a permutation, which is defined by the conditions that $\varepsilon(\sigma)=-1$ if σ is a simple transposition and

$$
\varepsilon\left(\sigma_{1} \sigma_{2}\right)=\varepsilon\left(\sigma_{1}\right) \varepsilon\left(\sigma_{2}\right)
$$

for all $\sigma_{1}, \sigma_{2} \in S_{k}$.
The sign of a permutation gives us the behaviour of skew-symmetric k-forms under permuting the arguments. If H is skew-symmetric and if $\sigma \in S_{k}$, then

$$
H\left(v_{1}, \ldots, v_{k}\right)=\varepsilon(\sigma) H\left(v_{\sigma(1)}, \cdots, v_{\sigma(n)}\right)
$$

3.2 Iterated tensors, dots, and wedges

If H is a $k-1$-form and $\alpha \in V^{*}$, then we define $H \otimes \alpha$ to be the k-form defined by

$$
(H \otimes \alpha)\left(v_{1}, \ldots, v_{k}\right)=H\left(v_{1}, \ldots, v_{k-1}\right) \alpha\left(v_{k}\right)
$$

Similarly, if H is a symmetric k-1-form and $\alpha \in V^{*}$, then we define $H \cdot \alpha$ to be the k-form defined by

$$
(H \otimes \alpha)\left(v_{1}, \ldots, v_{k}\right)=H\left(v_{1}, \ldots, v_{k-1}\right) \alpha\left(v_{k}\right)+\cdots+H\left(v_{2}, \ldots, v_{k}\right) \alpha\left(v_{1}\right)
$$

It is easy to see that $H \cdot \alpha$ is a symmetric k-form.
Similarly, if H is a skew-symmetric $k-1$-form and $\alpha \in V^{*}$, then we define $H \wedge \alpha$ to be the k-form defined by

$$
(H \otimes \alpha)\left(v_{1}, \ldots, v_{k}\right)=H\left(v_{1}, \ldots, v_{k-1}\right) \alpha\left(v_{k}\right)-\cdots \pm H\left(v_{2}, \ldots, v_{k}\right) \alpha\left(v_{1}\right)
$$

It is easy to see that $H \wedge \alpha$ is a skew-symmetric k-form.
From these definitions, we see that if $\alpha_{1}, \ldots, \alpha_{k} \in V^{*}$, then we can iteratively define

$$
\alpha_{1} \otimes \cdots \otimes \alpha_{k}:=\left(\left(\alpha_{1} \otimes \alpha_{2}\right) \otimes \alpha_{3}\right) \otimes \cdots \otimes \alpha_{k}
$$

and similar definitions for $\alpha_{1} \cdots \alpha_{k}$ and $\alpha_{1} \wedge \cdots \wedge \alpha_{k}$.
When we expand out the definitions of $\alpha_{1} \cdots \alpha_{k}$ and $\alpha_{1} \wedge \cdots \wedge \alpha_{k}$ there will be $k!$ terms, one for each element of S_{k}.

For any $\sigma \in S_{k}$, we have

$$
\alpha_{1} \cdots \alpha_{k}=\alpha_{\sigma(1)} \cdots \alpha_{\sigma(k)}
$$

and

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}=\varepsilon(\sigma) \alpha_{\sigma(1)} \wedge \cdots \wedge \alpha_{\sigma(k)}
$$

The later property implies that $\alpha_{1} \wedge \cdots \wedge \alpha_{k}=0$ if $\alpha_{i}=\alpha_{j}$ for some $i \neq j$.
The following result is helpful in understanding these iterated wedges.

Theorem 3.1. Let $\alpha_{1}, \ldots, \alpha_{k} \in V^{*}$.

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}=0 \text { if and only if } \alpha_{1}, \ldots, \alpha_{k} \text { are linearly dependent }
$$

Proof. Suppose that $\alpha_{1}, \ldots, \alpha_{k}$ is linearly dependent. Then there exists x_{1}, \ldots, x_{k} such that

$$
x_{1} \alpha_{1}+\cdots+x_{k} \alpha_{k}=0
$$

and not all x_{1}, \ldots, x_{k} are zero. Assume that $x_{k} \neq 0$. Let $H=\alpha_{1} \wedge \cdots \wedge \alpha_{k-1}$ and let us apply $H \wedge$ to both sides of this equation. Using the above results and the linearity of \wedge, we deduce that

$$
x_{k} \alpha_{1} \wedge \cdots \wedge \alpha_{k-1} \wedge \alpha_{k}=0
$$

which implies that $\alpha_{1} \wedge \cdots \wedge \alpha_{k}=0$ as desired.
For the converse, suppose that $\alpha_{1}, \ldots, \alpha_{k}$ are linearly independent. Then we can extend $\alpha_{1}, \ldots, \alpha_{k}$ to a basis $\alpha_{1}, \ldots, \alpha_{n}$ for V^{*}. Let v_{1}, \ldots, v_{n} be the dual basis for V. Then

$$
\left(\alpha_{1} \wedge \cdots \wedge \alpha_{k}\right)\left(v_{1}, \ldots, v_{k}\right)=1
$$

and so $\alpha_{1} \wedge \cdots \wedge \alpha_{k} \neq 0$.
The same method of proof can be used to prove the following result.
Theorem 3.2. Let $v_{1}, \ldots, v_{k} \in V$. Then there exists $H \in \Lambda^{k} V^{*}$ such that $H\left(v_{1}, \ldots, v_{k}\right) \neq 0$ if and only if v_{1}, \ldots, v_{k} are linearly independent.

In particular this theorem shows that $\Lambda^{k} V^{*}=0$ if $k>\operatorname{dim} V$.

3.3 Bases and dimension

We will now describe bases for our vector spaces of k-forms.
Theorem 3.3. Let $\alpha_{1}, \ldots, \alpha_{n}$ be a basis for V^{*}.
(i) $\left\{\alpha_{i_{1}} \otimes \cdots \otimes \alpha_{i_{k}}\right\}_{1 \leq i_{1}, \ldots, i_{k} \leq n}$ is a basis for $\left(V^{*}\right)^{\otimes k}$.
(ii) $\left\{\alpha_{i_{1}} \cdots \alpha_{i_{k}}\right\}_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n}$ is a basis for Sym $^{k} V^{*}$.
(iii) $\left\{\alpha_{i_{1}} \wedge \cdots \wedge \alpha_{i_{k}}\right\}_{1 \leq i_{1}<\cdots<i_{k} \leq n}$ is a basis for $\Lambda^{k} V^{*}$.

Proof. We give the proof for the case of $\left(V^{*}\right)^{\otimes k}$ as the other cases are similar. So simplify the notation, let us assume that $k=2$.

Let us first show that every bilinear form is a linear combination of $\left\{\alpha_{i} \otimes \alpha_{j}\right\}$.
Let H be a bilinear form. Let v_{1}, \ldots, v_{n} be the basis of V dual to $\alpha_{1}, \ldots, \alpha_{n}$. Let $c_{i j}=H\left(v_{i}, v_{j}\right)$ for each i, j. We claim that

$$
H=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} \alpha_{i} \otimes \alpha_{j}
$$

Since both sides are bilinear forms, it suffices to check that they agree on all pairs $\left(v_{k}, v_{l}\right)$ of basis vectors. By definition $H\left(v_{k}, v_{l}\right)=c_{k l}$. On the other hand,

$$
\left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} \alpha_{i} \otimes \alpha_{j}\right)\left(v_{k}, v_{l}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} \alpha_{i}\left(v_{k}\right) \alpha_{j}\left(v_{l}\right)=c_{k l}
$$

and so the claim follows.
Now to see that $\left\{\alpha_{i} \otimes \alpha_{j}\right\}$ is a linearly independent set, just note that if

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} \alpha_{i} \otimes \alpha_{j}=0
$$

then by evaluating both sides on $\left(v_{i}, v_{j}\right)$, we see that $c_{i j}=0$ for all i, j.
Example 3.4. Take $n=2, k=2$. Then our bases are

$$
\alpha_{1} \otimes \alpha_{1}, \alpha_{1} \otimes \alpha_{2}, \alpha_{2} \otimes \alpha_{1}, \alpha_{2} \otimes \alpha_{2}
$$

and

$$
\alpha_{1} \cdot \alpha_{1}, \alpha_{1} \cdot \alpha_{2}, \alpha_{2} \cdot \alpha_{2}
$$

and

$$
\alpha_{1} \wedge \alpha_{2}
$$

Corollary 3.5. The dimension of $\left(V^{*}\right)^{\otimes k}$ is n^{k}, the dimension of $S y m^{k} V^{*}$ is $\binom{n+k-1}{k}$ and the dimension of $\Lambda^{k} V^{*}$ is $\binom{n}{k}$.

