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1 The definition

Let V,W, X be three vector spaces. A bilinear map from V x W to X is a
function H : V. x W — X such that

H(avy + v2,w) = aH (v, w) + H(vy,w) for vi,ve € V;w € W,a € F
H(v,aw; +ws) = aH (v, wy) + H(v,ws) for v € Vwy,wy € W,a € F

Let V and W be vector spaces. A tensor product of V and W is a vector
space V' ® W along with a bilinear map ¢ : V. x W — V ® W, such that for
every vector space X and every bilinear map H : V x W — X there exists a
unique linear map 7': V @ W — X such that H =T o ¢.

In other words, giving a linear map from V ® W to X is the same thing as
giving a bilinear map from V' x W to X.

If V.® W is a tensor product, then we write v ® w := ¢(v ® w). Note that
there are two pieces of data in a tensor product: a vector space V ® W and a
bilinear map ¢ : Vx W =V  W.

Here are the main results about tensor products summarized in one theorem.

Theorem 1.1. (i) Any two tensor products of V,W are isomorphic.
(i) V,W has a tensor product.
(iii) If v1,...,v, is a basis for V and wy,...,wy, is a basis for W, then
s a basis for Vo W.

In particular, the last part of the theorem shows we can think of elements
of V.® W as n X m matrices with entries in F.

2 Existence

We will start by proving that the tensor product exists. To do so, we will
construct an explicit tensor product. This construction only works if V. W are
finite-dimensional.



Let B(V*,W*;FF) be the vector space of bilinear maps H : V* x W* — F.
If v € V and w € W, then we can define a bilinear map v ® w by

(v@w)(a, B) = alv)B(w).
Just as we saw before, we have the following result.

Theorem 2.1. Let vq,...,v, be a basis for V and let wq,. .., w,, be a basis for
W. Then {v; ® wjh<i<n,1<j<m i a basis for B(V*, W*;F)

Now, we define a map ¢ : V x W — B(V*, W*;F) by ¢(v,w) =v® w.
Theorem 2.2. B(V*, W*;F) along with ¢ is a tensor product for V,W.
Note that this proves parts (ii) and (iii) of our main theorem.

Proof. Fix bases v1,...,v, for V and wy,...,w,, for W.

Let X be a vector space and let H : V x W — X be a bilinear map. We
define a linear map T': V@ W — X by defining it on our basis as T'(v; Q w;) =
H(vi,w;). Then T o ¢ and H are two bilinear maps from V' x W to X which
agree on basis vectors, hence they are equal. (Note that it is easy to show that
for any (v,w) e Vx W, T(v®@w) = H(v,w).)

Finally, note that T is the unique linear map with this property, since it is
determined on the basis for B(V*, W*,F). O

Using the same ideas, it is easy to see that L(V*, W), L(W*, V), and B(V, W;F)*
are all also tensor products of V, W.

3 Uniqueness

Now we prove uniqueness. Here is the precise statement.

Theorem 3.1. Let (V@ W), ¢1 and (V @ W)a, ¢ be two tensor products of
V,W. Then there exists a unique isomorphism T : (V@ W), — (V@ W)y such
that ¢2 =To ¢1.

Proof. Let us apply the definition of tensor product to (V & W)1, ¢; with the
role of X, H taken by (V ® W)z, ¢2. By the definition, we obtain a (unique)
linear map T : (V @ W); — (V ® W)z such that ¢o =T o ¢;.

Reversing the roles of (V@ W), ¢; and (V @ W)a, ¢2, we find a linear map
S: (VW) — (V®W)p such that ¢1 = S o ¢a.

We claim that T'o S = [(ygw), and SoT = I(ygw), and hence T is an
isomorphism. We will now prove SoT = I(ygw), -

Note that (SoT)o¢; = S o ¢a = ¢1 by the above equations. Now, apply
the definition of tensor product to (V ® W), ¢; with the role of X, H taken
by (V. ® W)1,¢1. Then both SoT and I(ygw), can play the role of T'. So by
the uniqueness of “I” in the definition, we conclude that S oT = [iygw), as
desired.



Finally to see that the T that appears in the statement of the theorem is
unique, we just note from the first paragraph of this proof, it follows that there
is only one linear map T such that ¢ =T o ¢7. O



