# Tensor products 

Joel Kamnitzer

April 5, 2011

## 1 The definition

Let $V, W, X$ be three vector spaces. A bilinear map from $V \times W$ to $X$ is a function $H: V \times W \rightarrow X$ such that

$$
\begin{aligned}
H\left(a v_{1}+v_{2}, w\right) & =a H\left(v_{1}, w\right)+H\left(v_{2}, w\right) \text { for } v_{1}, v_{2} \in V, w \in W, a \in \mathbb{F} \\
H\left(v, a w_{1}+w_{2}\right) & =a H\left(v, w_{1}\right)+H\left(v, w_{2}\right) \text { for } v \in V, w_{1}, w_{2} \in W, a \in \mathbb{F}
\end{aligned}
$$

Let $V$ and $W$ be vector spaces. A tensor product of $V$ and $W$ is a vector space $V \otimes W$ along with a bilinear map $\phi: V \times W \rightarrow V \otimes W$, such that for every vector space $X$ and every bilinear map $H: V \times W \rightarrow X$, there exists a unique linear map $T: V \otimes W \rightarrow X$ such that $H=T \circ \phi$.

In other words, giving a linear map from $V \otimes W$ to $X$ is the same thing as giving a bilinear map from $V \times W$ to $X$.

If $V \otimes W$ is a tensor product, then we write $v \otimes w:=\phi(v \otimes w)$. Note that there are two pieces of data in a tensor product: a vector space $V \otimes W$ and a bilinear map $\phi: V \times W \rightarrow V \otimes W$.

Here are the main results about tensor products summarized in one theorem.
Theorem 1.1. (i) Any two tensor products of $V, W$ are isomorphic.
(ii) $V, W$ has a tensor product.
(iii) If $v_{1}, \ldots, v_{n}$ is a basis for $V$ and $w_{1}, \ldots, w_{m}$ is a basis for $W$, then

$$
\left\{v_{i} \otimes w_{j}\right\}_{1 \leq i \leq n, 1 \leq j \leq m}
$$

is a basis for $V \otimes W$.
In particular, the last part of the theorem shows we can think of elements of $V \otimes W$ as $n \times m$ matrices with entries in $\mathbb{F}$.

## 2 Existence

We will start by proving that the tensor product exists. To do so, we will construct an explicit tensor product. This construction only works if $V, W$ are finite-dimensional.

Let $B\left(V^{*}, W^{*} ; \mathbb{F}\right)$ be the vector space of bilinear maps $H: V^{*} \times W^{*} \rightarrow \mathbb{F}$. If $v \in V$ and $w \in W$, then we can define a bilinear map $v \otimes w$ by

$$
(v \otimes w)(\alpha, \beta)=\alpha(v) \beta(w) .
$$

Just as we saw before, we have the following result.
Theorem 2.1. Let $v_{1}, \ldots, v_{n}$ be a basis for $V$ and let $w_{1}, \ldots, w_{m}$ be a basis for $W$. Then $\left\{v_{i} \otimes w_{j}\right\}_{1 \leq i \leq n, 1 \leq j \leq m}$ is a basis for $B\left(V^{*}, W^{*} ; \mathbb{F}\right)$

Now, we define a map $\phi: V \times W \rightarrow B\left(V^{*}, W^{*} ; \mathbb{F}\right)$ by $\phi(v, w)=v \otimes w$.
Theorem 2.2. $B\left(V^{*}, W^{*} ; \mathbb{F}\right)$ along with $\phi$ is a tensor product for $V, W$.
Note that this proves parts (ii) and (iii) of our main theorem.
Proof. Fix bases $v_{1}, \ldots, v_{n}$ for $V$ and $w_{1}, \ldots, w_{m}$ for $W$.
Let $X$ be a vector space and let $H: V \times W \rightarrow X$ be a bilinear map. We define a linear map $T: V \otimes W \rightarrow X$ by defining it on our basis as $T\left(v_{i} \otimes w_{j}\right)=$ $H\left(v_{i}, w_{j}\right)$. Then $T \circ \phi$ and $H$ are two bilinear maps from $V \times W$ to $X$ which agree on basis vectors, hence they are equal. (Note that it is easy to show that for any $(v, w) \in V \times W, T(v \otimes w)=H(v, w)$.)

Finally, note that $T$ is the unique linear map with this property, since it is determined on the basis for $B\left(V^{*}, W^{*}, \mathbb{F}\right)$.

Using the same ideas, it is easy to see that $L\left(V^{*}, W\right), L\left(W^{*}, V\right)$, and $B(V, W ; \mathbb{F})^{*}$ are all also tensor products of $V, W$.

## 3 Uniqueness

Now we prove uniqueness. Here is the precise statement.
Theorem 3.1. Let $(V \otimes W)_{1}, \phi_{1}$ and $(V \otimes W)_{2}, \phi_{2}$ be two tensor products of $V, W$. Then there exists a unique isomorphism $T:(V \otimes W)_{1} \rightarrow(V \otimes W)_{2}$ such that $\phi_{2}=T \circ \phi_{1}$.

Proof. Let us apply the definition of tensor product to $(V \otimes W)_{1}, \phi_{1}$ with the role of $X, H$ taken by $(V \otimes W)_{2}, \phi_{2}$. By the definition, we obtain a (unique) linear map $T:(V \otimes W)_{1} \rightarrow(V \otimes W)_{2}$ such that $\phi_{2}=T \circ \phi_{1}$.

Reversing the roles of $(V \otimes W)_{1}, \phi_{1}$ and $(V \otimes W)_{2}, \phi_{2}$, we find a linear map $S:(V \otimes W)_{2} \rightarrow(V \otimes W)_{1}$ such that $\phi_{1}=S \circ \phi_{2}$.

We claim that $T \circ S=I_{(V \otimes W)_{2}}$ and $S \circ T=I_{(V \otimes W)_{1}}$ and hence $T$ is an isomorphism. We will now prove $S \circ T=I_{(V \otimes W)_{1}}$.

Note that $(S \circ T) \circ \phi_{1}=S \circ \phi_{2}=\phi_{1}$ by the above equations. Now, apply the definition of tensor product to $(V \otimes W)_{1}, \phi_{1}$ with the role of $X, H$ taken by $(V \otimes W)_{1}, \phi_{1}$. Then both $S \circ T$ and $I_{(V \otimes W)_{1}}$ can play the role of $T$. So by the uniqueness of " $T$ " in the definition, we conclude that $S \circ T=I_{(V \otimes W)_{1}}$ as desired.

Finally to see that the $T$ that appears in the statement of the theorem is unique, we just note from the first paragraph of this proof, it follows that there is only one linear map $T$ such that $\phi_{2}=T \circ \phi_{1}$.

