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1 The definition

Let V,W,X be three vector spaces. A bilinear map from V × W to X is a
function H : V × W → X such that

H(av1 + v2, w) = aH(v1, w) + H(v2, w) for v1, v2 ∈ V,w ∈ W,a ∈ F

H(v, aw1 + w2) = aH(v, w1) + H(v, w2) for v ∈ V,w1, w2 ∈ W,a ∈ F

Let V and W be vector spaces. A tensor product of V and W is a vector
space V ⊗ W along with a bilinear map φ : V × W → V ⊗ W , such that for
every vector space X and every bilinear map H : V × W → X, there exists a
unique linear map T : V ⊗ W → X such that H = T ◦ φ.

In other words, giving a linear map from V ⊗ W to X is the same thing as
giving a bilinear map from V × W to X.

If V ⊗ W is a tensor product, then we write v ⊗ w := φ(v ⊗ w). Note that
there are two pieces of data in a tensor product: a vector space V ⊗ W and a
bilinear map φ : V × W → V ⊗ W .

Here are the main results about tensor products summarized in one theorem.

Theorem 1.1. (i) Any two tensor products of V,W are isomorphic.

(ii) V,W has a tensor product.

(iii) If v1, . . . , vn is a basis for V and w1, . . . , wm is a basis for W , then

{vi ⊗ wj}1≤i≤n,1≤j≤m

is a basis for V ⊗ W .

In particular, the last part of the theorem shows we can think of elements
of V ⊗ W as n × m matrices with entries in F.

2 Existence

We will start by proving that the tensor product exists. To do so, we will
construct an explicit tensor product. This construction only works if V,W are
finite-dimensional.

1



Let B(V ∗,W ∗; F) be the vector space of bilinear maps H : V ∗ × W ∗ → F.
If v ∈ V and w ∈ W , then we can define a bilinear map v ⊗ w by

(v ⊗ w)(α, β) = α(v)β(w).

Just as we saw before, we have the following result.

Theorem 2.1. Let v1, . . . , vn be a basis for V and let w1, . . . , wm be a basis for
W . Then {vi ⊗ wj}1≤i≤n,1≤j≤m is a basis for B(V ∗,W ∗; F)

Now, we define a map φ : V × W → B(V ∗,W ∗; F) by φ(v, w) = v ⊗ w.

Theorem 2.2. B(V ∗,W ∗; F) along with φ is a tensor product for V,W .

Note that this proves parts (ii) and (iii) of our main theorem.

Proof. Fix bases v1, . . . , vn for V and w1, . . . , wm for W .
Let X be a vector space and let H : V × W → X be a bilinear map. We

define a linear map T : V ⊗W → X by defining it on our basis as T (vi ⊗wj) =
H(vi, wj). Then T ◦ φ and H are two bilinear maps from V × W to X which
agree on basis vectors, hence they are equal. (Note that it is easy to show that
for any (v, w) ∈ V × W , T (v ⊗ w) = H(v, w).)

Finally, note that T is the unique linear map with this property, since it is
determined on the basis for B(V ∗,W ∗, F).

Using the same ideas, it is easy to see that L(V ∗,W ), L(W ∗, V ), and B(V,W ; F)∗

are all also tensor products of V,W .

3 Uniqueness

Now we prove uniqueness. Here is the precise statement.

Theorem 3.1. Let (V ⊗ W )1, φ1 and (V ⊗ W )2, φ2 be two tensor products of
V,W . Then there exists a unique isomorphism T : (V ⊗W )1 → (V ⊗W )2 such
that φ2 = T ◦ φ1.

Proof. Let us apply the definition of tensor product to (V ⊗ W )1, φ1 with the
role of X,H taken by (V ⊗ W )2, φ2. By the definition, we obtain a (unique)
linear map T : (V ⊗ W )1 → (V ⊗ W )2 such that φ2 = T ◦ φ1.

Reversing the roles of (V ⊗W )1, φ1 and (V ⊗W )2, φ2, we find a linear map
S : (V ⊗ W )2 → (V ⊗ W )1 such that φ1 = S ◦ φ2.

We claim that T ◦ S = I(V ⊗W )2 and S ◦ T = I(V ⊗W )1 and hence T is an
isomorphism. We will now prove S ◦ T = I(V ⊗W )1 .

Note that (S ◦ T ) ◦ φ1 = S ◦ φ2 = φ1 by the above equations. Now, apply
the definition of tensor product to (V ⊗ W )1, φ1 with the role of X,H taken
by (V ⊗ W )1, φ1. Then both S ◦ T and I(V ⊗W )1 can play the role of T . So by
the uniqueness of “T” in the definition, we conclude that S ◦ T = I(V ⊗W )1 as
desired.
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Finally to see that the T that appears in the statement of the theorem is
unique, we just note from the first paragraph of this proof, it follows that there
is only one linear map T such that φ2 = T ◦ φ1.
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