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A basis of a vector space V is a collection of vectors {vi}i∈I such that for all v ∈ V , there exists a unique
collection of scalars {ai}i∈I such that v =

∑
i∈I aivi and at most, finitely many ai are non-zero.

A subset S ⊂ V is called linearly independent if whenever v1, ..., vn ∈ S and there exist a1, ..., an ∈ F
such that a1v1 + ...+ anvn = 0, then ai = 0 for all i.

For any V , the dual space, V j, is the set of all linear functionals on V .

Suppose {vi}i∈I is a basis of V . Then define v∗i ∈ V ∗ by

v∗i (vj) =

{
1, if i = j

0, if i 6= j

An equivalence relation on a set, X, is a collection of ordered pairs x ∼ y, x, y ∈ X that satisfies
reflexivity, symmetry, and transitivity:

• Reflexivity: x ∼ x for all x ∈ X

• Symmetry: x ∼ y implies y ∼ x for all x, y ∈ X

• Transitivity: if x ∼ y and y ∼ z, then x ∼ z, for all x, y, z ∈ X.

If ∼ is an equivalence relation on X, then for x ∈ X, the equivalence class [x] is defined by

[x] = {y ∈ X : y ∼ x}.

[x] = [y] if and only if x ∼ y. X/ ∼ denotes the set of all equivalence classes of X.

An equivalence relation on a vector space, V , is defined by v1 ∼ v2 if v2 − v1 ∈ W , W ⊂ V . Then
let V/W := V/ ∼. We can put a vector space structure on V/W by defining:

• Addition: [v1] + [v2] = [v1 + v2], v1, v2 ∈ V

• Scalar multiplication: a[v] = [av], a ∈ F, v ∈ V .

Suppose we have T : V → V and W a T -invariant subspace. Then there is a linear map Tv/w : V/W →
V/W defined by Tv/w([v]) = [T (v)]

For V1, V2, W vector spaces, a bilinear map B : V1 × V2 →W is a map satisfying:

• B(av1, v2) = aB(v1, v2) = B(v1, av2) for v1 ∈ V1, v2 ∈ V2
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• B(v1 + v′1, v2) = B(v1, v2) + B(v′1, v2) and B(v1, v2 + v′2) = B(v1, v2) + B(v1, v
′
2) for v1, v

′
1 ∈ V1,

v2, v
′
2 ∈ V2.

A bilinear pairing is a bilinear map B : V1 × V2 → F.

A bilinear form is a bilinear map B : V1 × V1 → F.

A bilinear pairing B : V ×W → F is called non-degenerate if

• for all v 6= 0, v ∈ V there exists w ∈W such that B(v, w) 6= 0.

• for all w 6= 0, w ∈W there exists v ∈ V such that B(w, v) 6= 0.

A bilinear B : V ×W → F gives rise to two linear maps:

• B̃ : V →W ∗ defined by (B̃(v))(w) = B(v, w)

• B̃ : W → V ∗ defined by (B̃(w))(v) = B(w, v)

Define W⊥ = {v ∈ V ∗ : α(w) = 0 ∀ w ∈W}.

If B is a bilinear form on V , then define W⊥,B = {v ∈ V : B(v, w) = 0 ∀ w ∈W}.

For V and W vector spaces, their direct sum is defined by V ⊕W = {(v, w) : v ∈ V,w ∈W}.

For V and W vector spaces, their tensor product is defined by V ⊗W = F[V ×W ]/Y , where F[V ×W ]
denotes the free vector space on V ×W and Y is defined by:

Y = span((av, w)− a(v, w), (v, aw)− a(v, w), (v1 + v2, w)− (v1, w)− (v2, w), (v, w1 +w2)− (v, w1)− (v, w2))

where a ∈ F, v1, v2, v3 ∈ V , w1, w2, w3 ∈W . If v ∈ V and w ∈W , v ⊗ w := [(v, w)] ∈ V ⊗W . If {v1, ..., vn}
is a basis for V and {w1, ..., wm} is a basis for W , then {vi ⊗ vj} is a basis for V ⊗W .

If A is an n1×m1 matrix, B an n2×m2 matrix, then A⊗B is an n1n2×m1m2 matrix indexed by: rows
labelled by pairs (i1, i2), 1 ≤ i1 ≤ n1 and 1 ≤ i2 ≤ n2 and columns labelled by pairs (j1, j2), 1 ≤ j1 ≤ m1

and 1 ≤ j2 ≤ m2, where, A⊗B(i1,i2),(j1,j2) := Ai1,j1Bi2,j2

For V a vector space, the kth tensor power of V , is defined by V ⊗k = V ⊗ ...⊗ V (k times). Suppose
that V has a basis {v1, ..., vn}.

Define a linear map τ : V ⊗ V → V ⊗ V by: τ(v1 ⊗ v2) = v2 ⊗ v1 for any v1, v2 ∈ V . τ2 = I.

Define the symmetric square of V to be the 1-eigenspace of τ , Sym2V = {y ∈ V ⊗2 : τ(y) = y}. Sym2V
has a basis {vi ⊗ vi ∀ i, vi ⊗ vj + vj ⊗ vi 1 ≤ i < j ≤ n}.

Define the exterior square of V to be the −1-eigenspace of τ ,
∧2

V = {y ∈ V ⊗2 : τ(y) = −y}.
∧2

V
has a basis {vi ⊗ vj − vj ⊗ vi 1 ≤ i < j ≤ n}.

Let V be a vector space. We can consider V ⊗1, V ⊗2, ... Then we can define the tensor algebra
TV =

⊕∞
k=0 V

⊗k.

A transposition σ is a permuation which just switches two elements. So there exist i 6= j with σ(i) = j,
σ(j) = i and σ(l) = l for all l 6= i, j.

Recall sign, sign : Sk → {1,−1}. The sign function has the following properties:
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• sign(σ1σ2) = sign(σ1)sign(σ2)

• σ is a transposition, then sign(σ) = −1

Define the symmetric power of V , SymkV = {y ∈ V ⊗k : σ(y) = y ∀ σ ∈ Sk}. Define v1 · v2 · ... · vk =∑
σ∈Sk

vσ(1) ⊗ ... ⊗ vσ(k). Then σ(v1 · ... · vk) = v1 · ... · vk. Let {v1, ..., vk} be a basis for V . Then

{vi1 · ... · vik : 1 ≤ i1 ≤ ... ≤ ik ≤ n} forms a basis for SymkV .

Define the exterior power or wedge power of V ,
∧k

V = {y ∈ V ⊗k : σ(y) = sign(σ)y ∀ σ ∈ Sk}.
Define v1∧v2∧...∧vk =

∑
σ∈Sk

sign(σ)vσ(1)⊗...⊗vσ(k). Let {v1, ..., vk} be a basis for V . Then {vi1∧...∧vik :

i1 < ... < ik} forms a basis for
∧k

V .

Let T : V →W . Then for all k ≥ 0, we can define:

• T⊗k : V ⊗k →W⊗k by T⊗k(v1 ⊗ ...⊗ vk) = Tv1 ⊗ ...⊗ Tvk.

• SymkT : SymkV → SymkW by SymkT (v1 · ... · vk) = Tv1 · ... · Tvk.

•
∧k

T :
∧k

V →
∧k

W by
∧k

T (v1 ∧ ... ∧ vk) = Tv1 ∧ ... ∧ Tvk. Note:
∧k

T = detT

Let A be a square matrix. Define the trace of A by tr(A) =
∑n
i=1Ai,i, the sum of the diagonal entries

of A. The trace of A is also the coefficient of x in det(xI −A).
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