MAT247

Definitions (part 2)

Winter 2014

A basis of a vector space V is a collection of vectors $\left\{v_{i}\right\}_{i \in I}$ such that for all $v \in V$, there exists a unique collection of scalars $\left\{a_{i}\right\}_{i \in I}$ such that $v=\sum_{i \in I} a_{i} v_{i}$ and at most, finitely many a_{i} are non-zero.

A subset $S \subset V$ is called linearly independent if whenever $v_{1}, \ldots, v_{n} \in S$ and there exist $a_{1}, \ldots, a_{n} \in \mathbb{F}$ such that $a_{1} v_{1}+\ldots+a_{n} v_{n}=0$, then $a_{i}=0$ for all i.

For any V, the dual space, $V j$, is the set of all linear functionals on V.
Suppose $\left\{v_{i}\right\}_{i \in I}$ is a basis of V. Then define $v_{i}^{*} \in V^{*}$ by

$$
v_{i}^{*}\left(v_{j}\right)= \begin{cases}1, & \text { if } i=j \\ 0, & \text { if } i \neq j\end{cases}
$$

An equivalence relation on a set, X, is a collection of ordered pairs $x \sim y, x, y \in X$ that satisfies reflexivity, symmetry, and transitivity:

- Reflexivity: $x \sim x$ for all $x \in X$
- Symmetry: $x \sim y$ implies $y \sim x$ for all $x, y \in X$
- Transitivity: if $x \sim y$ and $y \sim z$, then $x \sim z$, for all $x, y, z \in X$.

If \sim is an equivalence relation on X, then for $x \in X$, the equivalence class $[x]$ is defined by

$$
[x]=\{y \in X: y \sim x\} .
$$

$[x]=[y]$ if and only if $x \sim y . X / \sim$ denotes the set of all equivalence classes of X.
An equivalence relation on a vector space, V, is defined by $v_{1} \sim v_{2}$ if $v_{2}-v_{1} \in W, W \subset V$. Then let $V / W:=V / \sim$. We can put a vector space structure on V / W by defining:

- Addition: $\left[v_{1}\right]+\left[v_{2}\right]=\left[v_{1}+v_{2}\right], v_{1}, v_{2} \in V$
- Scalar multiplication: $a[v]=[a v], a \in \mathbb{F}, v \in V$.

Suppose we have $T: V \rightarrow V$ and W a T-invariant subspace. Then there is a linear map $T_{v / w}: V / W \rightarrow$ V / W defined by $T_{v / w}([v])=[T(v)]$

For V_{1}, V_{2}, W vector spaces, a bilinear map $B: V_{1} \times V_{2} \rightarrow W$ is a map satisfying:

- $B\left(a v_{1}, v_{2}\right)=a B\left(v_{1}, v_{2}\right)=B\left(v_{1}, a v_{2}\right)$ for $v_{1} \in V_{1}, v_{2} \in V_{2}$
- $B\left(v_{1}+v_{1}^{\prime}, v_{2}\right)=B\left(v_{1}, v_{2}\right)+B\left(v_{1}^{\prime}, v_{2}\right)$ and $B\left(v_{1}, v_{2}+v_{2}^{\prime}\right)=B\left(v_{1}, v_{2}\right)+B\left(v_{1}, v_{2}^{\prime}\right)$ for $v_{1}, v_{1}^{\prime} \in V_{1}$, $v_{2}, v_{2}^{\prime} \in V_{2}$.

A bilinear pairing is a bilinear map $B: V_{1} \times V_{2} \rightarrow \mathbb{F}$.
A bilinear form is a bilinear map $B: V_{1} \times V_{1} \rightarrow \mathbb{F}$.
A bilinear pairing $B: V \times W \rightarrow \mathbb{F}$ is called non-degenerate if

- for all $v \neq 0, v \in V$ there exists $w \in W$ such that $B(v, w) \neq 0$.
- for all $w \neq 0, w \in W$ there exists $v \in V$ such that $B(w, v) \neq 0$.

A bilinear $B: V \times W \rightarrow \mathbb{F}$ gives rise to two linear maps:

- $\tilde{B}: V \rightarrow W^{*}$ defined by $(\tilde{B}(v))(w)=B(v, w)$
- $\tilde{B}: W \rightarrow V^{*}$ defined by $(\tilde{B}(w))(v)=B(w, v)$

Define $W^{\perp}=\left\{v \in V^{*}: \alpha(w)=0 \forall w \in W\right\}$.
If B is a bilinear form on V, then define $W^{\perp, B}=\{v \in V: B(v, w)=0 \forall w \in W\}$.
For V and W vector spaces, their direct sum is defined by $V \oplus W=\{(v, w): v \in V, w \in W\}$.
For V and W vector spaces, their tensor product is defined by $V \otimes W=\mathbb{F}[V \times W] / Y$, where $\mathbb{F}[V \times W]$ denotes the free vector space on $V \times W$ and Y is defined by:
$Y=\operatorname{span}\left((a v, w)-a(v, w),(v, a w)-a(v, w),\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right),\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right)\right)$ where $a \in \mathbb{F}, v_{1}, v_{2}, v_{3} \in V, w_{1}, w_{2}, w_{3} \in W$. If $v \in V$ and $w \in W, v \otimes w:=[(v, w)] \in V \otimes W$. If $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and $\left\{w_{1}, \ldots, w_{m}\right\}$ is a basis for W, then $\left\{v_{i} \otimes v_{j}\right\}$ is a basis for $V \otimes W$.

If A is an $n_{1} \times m_{1}$ matrix, B an $n_{2} \times m_{2}$ matrix, then $A \otimes B$ is an $n_{1} n_{2} \times m_{1} m_{2}$ matrix indexed by: rows labelled by pairs $\left(i_{1}, i_{2}\right), 1 \leq i_{1} \leq n_{1}$ and $1 \leq i_{2} \leq n_{2}$ and columns labelled by pairs $\left(j_{1}, j_{2}\right), 1 \leq j_{1} \leq m_{1}$ and $1 \leq j_{2} \leq m_{2}$, where, $A \otimes B_{\left(i_{1}, i_{2}\right),\left(j_{1}, j_{2}\right)}:=A_{i_{1}, j_{1}} B_{i_{2}, j_{2}}$

For V a vector space, the kth tensor power of V, is defined by $V^{\otimes k}=V \otimes \ldots \otimes V$ (k times). Suppose that V has a basis $\left\{v_{1}, \ldots, v_{n}\right\}$.

Define a linear map $\tau: V \otimes V \rightarrow V \otimes V$ by: $\tau\left(v_{1} \otimes v_{2}\right)=v_{2} \otimes v_{1}$ for any $v_{1}, v_{2} \in V . \tau^{2}=I$.
Define the symmetric square of V to be the 1-eigenspace of $\tau, \operatorname{Sym}^{2} V=\left\{y \in V^{\otimes 2}: \tau(y)=y\right\} . \operatorname{Sym}^{2} V$ has a basis $\left\{v_{i} \otimes v_{i} \forall i, v_{i} \otimes v_{j}+v_{j} \otimes v_{i} 1 \leq i<j \leq n\right\}$.

Define the exterior square of V to be the -1-eigenspace of $\tau, \Lambda^{2} V=\left\{y \in V^{\otimes 2}: \tau(y)=-y\right\} . \Lambda^{2} V$ has a basis $\left\{v_{i} \otimes v_{j}-v_{j} \otimes v_{i} 1 \leq i<j \leq n\right\}$.

Let V be a vector space. We can consider $V^{\otimes 1}, V^{\otimes 2}, \ldots$ Then we can define the tensor algebra $T V=\bigoplus_{k=0}^{\infty} V^{\otimes k}$.

A transposition σ is a permuation which just switches two elements. So there exist $i \neq j$ with $\sigma(i)=j$, $\sigma(j)=i$ and $\sigma(l)=l$ for all $l \neq i, j$.

Recall sign, sign : $S_{k} \rightarrow\{1,-1\}$. The sign function has the following properties:

- $\operatorname{sign}\left(\sigma_{1} \sigma_{2}\right)=\operatorname{sign}\left(\sigma_{1}\right) \operatorname{sign}\left(\sigma_{2}\right)$
- σ is a transposition, then $\operatorname{sign}(\sigma)=-1$

Define the symmetric power of $V, \operatorname{Sym}^{k} V=\left\{y \in V^{\otimes k}: \sigma(y)=y \forall \sigma \in S_{k}\right\}$. Define $v_{1} \cdot v_{2} \cdot \ldots \cdot v_{k}=$ $\sum_{\sigma \in S_{k}} v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(k)}$. Then $\sigma\left(v_{1} \cdot \ldots \cdot v_{k}\right)=v_{1} \cdot \ldots \cdot v_{k}$. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for V. Then $\left\{v_{i_{1}} \cdot \ldots \cdot v_{i_{k}}: 1 \leq i_{1} \leq \ldots \leq i_{k} \leq n\right\}$ forms a basis for $\operatorname{Sym}^{k} V$.

Define the exterior power or wedge power of $V, \bigwedge^{k} V=\left\{y \in V^{\otimes k}: \sigma(y)=\operatorname{sign}(\sigma) y \forall \sigma \in S_{k}\right\}$. Define $v_{1} \wedge v_{2} \wedge \ldots \wedge v_{k}=\sum_{\sigma \in S_{k}} \operatorname{sign}(\sigma) v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(k)}$. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be a basis for V. Then $\left\{v_{i_{1}} \wedge \ldots \wedge v_{i_{k}}\right.$: $\left.i_{1}<\ldots<i_{k}\right\}$ forms a basis for $\bigwedge^{k} V$.

Let $T: V \rightarrow W$. Then for all $k \geq 0$, we can define:

- $T^{\otimes k}: V^{\otimes k} \rightarrow W^{\otimes k}$ by $T^{\otimes k}\left(v_{1} \otimes \ldots \otimes v_{k}\right)=T v_{1} \otimes \ldots \otimes T v_{k}$.
- $\operatorname{Sym}^{k} T: \operatorname{Sym}^{k} V \rightarrow \operatorname{Sym}^{k} W$ by $\operatorname{Sym}^{k} T\left(v_{1} \cdot \ldots \cdot v_{k}\right)=T v_{1} \cdot \ldots \cdot T v_{k}$.
- $\bigwedge^{k} T: \wedge^{k} V \rightarrow \bigwedge^{k} W$ by $\wedge^{k} T\left(v_{1} \wedge \ldots \wedge v_{k}\right)=T v_{1} \wedge \ldots \wedge T v_{k}$. Note: $\Lambda^{k} T=\operatorname{det} T$

Let A be a square matrix. Define the trace of A by $\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i, i}$, the sum of the diagonal entries of A. The trace of A is also the coefficient of x in $\operatorname{det}(x I-A)$.

