Symmetric Bilinear Forms: Definitions

Eric Bannatyne

April 18, 2014

Definition 1. If V_{1}, V_{2}, W are vector spaces, a map $B: V_{1} \times V_{2} \rightarrow W$ is bilinear if, for every $v_{1}, v_{1}^{\prime} \in V_{1}, v_{2}, v_{2}^{\prime} \in V_{2}, a \in \mathbb{F}$,

1. $B\left(a v_{1}, v_{2}\right)=a B\left(v_{1}, v_{2}\right)=B\left(v_{1}, a v_{2}\right)$,
2. $B\left(v_{1}+v_{1}^{\prime}, v_{2}\right)=B\left(v_{1}, v_{2}\right)+B\left(v_{1}^{\prime}, v_{2}\right)$, and
3. $B\left(v_{1}, v_{2}+v_{2}^{\prime}\right)=B\left(v_{1}, v_{2}\right)+B\left(v_{1}, v_{2}^{\prime}\right)$.

Definition 2. A bilinear pairing is a map $B: V \times W \rightarrow \mathbb{F}$ that is bilinear.
Definition 3. A bilinear pairing $B: V \times W \rightarrow F$ is non-degenerate if

1. for every nonzero $v \in V$, there is some $w \in W$ such that $B(v, w) \neq 0$, and
2. for every nonzero $w \in W$, there is some $v \in V$ such that $B(v, w) \neq 0$.

Definition 4. If $B: V \times W \rightarrow \mathbb{F}$ is a bilinear pairing, we have two maps

1. $\tilde{B}: V \rightarrow W^{*}$ defined by $\tilde{B}(v)(w)=B(v, w)$, and
2. $\tilde{B}: W \rightarrow V^{*}$ defined by $\tilde{B}(w)(v)=B(v, w)$.

Definition 5. A bilinear form is a bilinear pairing $H: V \times V \rightarrow \mathbb{F}$.
Definition 6. A bilinear form H is symmetric if $H(v, w)=H(w, v)$ for all $v, w \in V$.
Definition 7. Given a symmetric bilinear form H on V, we can define a quadratic form $Q: V \rightarrow \mathbb{F}$ by $Q(v)=B(v, v)$ for all $v \in V$.

Definition 8. If $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for V and H is a bilinear form on V, the matrix of H with respect to β is

$$
\left[\begin{array}{ccc}
H\left(v_{1}, v_{1}\right) & \cdots & H\left(v_{1}, v_{n}\right) \\
\vdots & \ddots & \vdots \\
H\left(v_{n}, v_{1}\right) & \cdots & H\left(v_{n}, v_{n}\right)
\end{array}\right] .
$$

Definition 9. A matrix A is symmetric if $A^{t}=A$.

Definition 10. Two matrices A and B are congruent if there is an invertible matrix P such that $P^{t} A P=B$.

Definition 11. If H is a symmetric bilinear form over a vector space V, then a vector $v \in V$ is a null vector if $H(v, v)=0$.

Definition 12. If $W \subseteq V$ is a subspace of V, then $W^{\perp_{H}}=\{v \in V: H(v, w)=0$ for all $w \in$ $W\}$.

Definition 13. If V is a vector space over \mathbb{R}, and H is a symmetric bilinear form over V, then the signature of H is (p, q) where p and q are the numbers of 1's and -1 's respectively in the diagonal form of H derived from Sylvester's law of inertia.

Definition 14. Let H be a symmetric bilinear form over a real vector space. H is positivedefinite if $H(v, v)>0$ for all nonzero $v \in V$. Similarly, H is negative-definite if $H(v, v)<0$ for all nonzero $v \in V$.

Definition 15. Let H be a symmetric bilinear form on V. The radical of H is

$$
\operatorname{rad}(H)=\{v \in V: H(v, w)=0 \text { for all } w \in V\}
$$

Definition 16. The rank of a symmetric bilinear form H over V is

$$
\operatorname{rank}(H)=\operatorname{dim}(V)-\operatorname{dim} \operatorname{rad}(H)
$$

Definition 17. Let Q be a non-degenerate quadratic form on \mathbb{R}^{3}. Given any $c \in \mathbb{R}$, the set of solutions to the equation $Q(x, y, z)=c$ is a non-degenerate quadric surface.

