MAT 247, Winter 2014 Assignment 1 Due Jan 14

January 6, 2014

- 1. Suppose that A, B are $n \times n$ matrices. Assume that there exists an invertible $n \times n$ matrix Q such that $Q^{-1}AQ = B$. Prove that there exists a vector space V and a linear operator $T: V \to V$ such that A and B are both matrices for T (with respect to two different bases).
- 2. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

- (a) Consider A as a linear operator on \mathbb{R}^2 and find a basis for \mathbb{R}^2 consisting of eigenvectors for this linear operators.
- (b) Find an invertible matrix Q such that $Q^{-1}AQ$ is diagonal.
- 3. Prove that the following conditions on a square matrix A are equivalent.
 - (a) A is a scalar multiple of the identity matrix.
 - (b) Every vector is an eigenvector for A.
 - (c) A is diagonalizable and has only one eigenvalue.
 - (d) There are no matrices (other than A) which are similar to A.
- 4. For each of the following complex matrices A, determine if there exists a complex matrix B such that $B^2 = A$. (Hint: use Jordan form.)

(a)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
(b)

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

5. Recall that an $n \times n$ complex matrix A is called nilpotent if 0 is its only eigenvalue. How many 5×5 nilpotent Jordan form matrices are there?