MAT 247, Winter 2014 Assignment 10 Due April 1

1. Let $V=\mathbb{F}_{2}^{2}$ (here \mathbb{F}_{2} is the field with two elements). Find a non-zero bilinear form H on V for which every vector is null.
2. An integer n is called square-free if it is not divisible by the square of any integer.
(a) Let $\mathbb{F}=\mathbb{Q}$, the field of rational numbers. Let H be a symmetric bilinear form on a vector space V. Prove that there exists a basis for V for which the matrix representing H is diagonal with squarefree integers on the diagonal.
(b) Give an example of H, V as above which shows that the resulting diagonal matrix is not unique (even up to permutation).
3. Let Q be a non-degenerate quadratic form on \mathbb{R}^{3}. Given any real number c, the set of solutions to the equation $Q(x, y, z)=c$ is called a non-degenerate quadric surface.
(a) Up to linear transformation, how many different non-degenerate quadric surfaces are there? Draw a picture of each of them.
(b) Which quadric surface is defined by the equation

$$
x^{2}+2 x z+y^{2}+z^{2}+6 y z=10
$$

4. Let H be a symmetric bilinear form on a n-dimensional vector space V. Let β be a basis for V. Let A be the matrix of H with respect to the basis β.
(a) Prove that $A=[\tilde{H}]_{\beta}^{\beta^{*}}$. (Here β^{*} is the dual basis for V^{*} constructed from β.)
(b) Use (a) to prove that if γ is another basis for V, then the matrix of H with respect to γ is $P^{t} A P$ where P is the change of basis matrix from β to γ.
(c) Use (a) to prove that $\operatorname{rank}(A)+\operatorname{dim} \operatorname{rad}(H)=n$, where

$$
\operatorname{rad}(H)=\{v \in V: H(v, w)=0 \text { for all } w \in V\} .
$$

