MAT 247, Winter 2014
 Assignment 2
 Due Jan 21

January 13, 2014

1. This exercise concerns the matrix expontential. We work with $\mathbb{F}=\mathbb{R}$. Let A be a square matrix, we define

$$
e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} .
$$

You may assume that e^{A} converges (in some appropriate sense) and that $e^{A+B}=e^{A} e^{B}$ whenever A, B commute.
(a) Let

$$
A=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right]
$$

Compute e^{A}.
(b) Let A be an $n \times n$ matrix and let $v \in \mathbb{R}^{n}$. Consider the differential equation $f^{\prime}(x)=A f(x)$ with initial condition $f(0)=v$, where $f: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is a vector-valued function. Prove that this differential equation has solution $f(x)=e^{x A} v$. (You may use that $\frac{d}{d x} e^{x A}=$ $A e^{x A}$.)
(c) Solve the system of differential equations

$$
f_{1}^{\prime}(x)=2 f_{1}(x)+f_{2}(x) \quad f_{2}^{\prime}(x)=2 f_{2}(x)
$$

with initial condition $f_{1}(0)=a, f_{2}(0)=b$.
2. Show that the two matrices

$$
\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{lllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

are not similar. Do not use any theorems from class which we have not proved. (Hint: consider the null space of powers of these matrices.)
3. Let $\mathbb{F}=\mathbb{R}$. Consider the vector space V of polynomials of degree at most 3. Let $T: V \rightarrow V$ be the linear operator of differentiation. Find a basis β for V for which $[T]_{\beta}$ is a Jordan form matrix.
4. Let $\mathbb{F}=\mathbb{R}$. Consider the vector space $V=\left\{p(x) e^{x}\right\}$ such that $p(x)$ is a polynomial of degree at most 3 . Let $T: V \rightarrow V$ be the linear operator of differentiation. Find a basis β for V for which $[T]_{\beta}$ is a Jordan form matrix.
5. Find two 5×5 Jordan form matrices which are not similar but which both have minimal polynomial $(x-2)^{2}(x-3)$.

