MAT 247, Winter 2014
 Assignment 3
 Due Jan 28

January 20, 2014

1. Let V be a vector space and let $T: V \rightarrow V$ be a linear operator. Suppose that v is a generalized eigenvector with eigenvalue λ and choose m such that $(T-\lambda I)^{m}(v)=0$ but $(T-\lambda I)^{m-1}(v) \neq 0$. Prove that

$$
\left\{v,(T-\lambda I)(v), \cdots,(T-\lambda I)^{m-1}(v)\right\}
$$

are linearly independent.
2. Let V be a complex vector space and let $T: V \rightarrow V$ be a linear operator. Prove that $\operatorname{null}(T) \oplus \operatorname{im}(T)=V$ if and only if $E_{0}=K_{0}$ (every generalized eigenvector with eigenvalue 0 is actually an eigenvector).
3. Let $T: V \rightarrow V$ be a linear operator and let $p(x)$ be its minimal polynomial. Prove that T is invertible if and only if x does not divide $p(x)$.
4. Let $T: V \rightarrow V$ be a linear operator on a complex vector space. Let $n=\operatorname{dim} V$. We say that V is indecomposable for the action of T if there do not exist T-invariant subspaces W_{1}, W_{2} such that $V=W_{1} \oplus W_{2}$. Prove that V is indecomposable if and only if the minimal polynomial of T is $(x-\lambda)^{n}$ for some $\lambda \in \mathbb{C}$.
5. Find an operator on a real vector space which is indecomposable, but whose minimal polynomial is not $(x-\lambda)^{n}$.
6. Let T be a linear operator on a complex vector space. Suppose that $T^{m}=I$ for some m. Prove that T is diagonalizable.

