MAT 247, Winter 2014 Assignment 4 Due Feb 4

- 1. Let T be a linear operator on a complex vector space V. Let $\lambda_1, \ldots, \lambda_k$ be the eigenvalues of T.
 - (a) Let $v \in V$. Prove that there exist unique vectors v_1, \ldots, v_k such that $v = v_1 + \cdots + v_k$ and $v_i \in K_{\lambda_i}$ for all i.
 - (b) Define a linear operator $D: V \to V$ by $D(v) = \lambda_1 v_1 + \dots + \lambda_k v_k$ and let N = T - D. Prove that D is diagonalizable, N is nilpotent, and DN = ND.
 - (c) Pick a basis β for V for which $[T]_{\beta}$ is a Jordan form matrix. Describe $[D]_{\beta}$ and $[N]_{\beta}$.
- 2. Let A be an $n \times n$ matrix with real entries. Prove that the minimal polynomial of A when considered as a real matrix is the same as the minimal polynomial of A when considered as a complex matrix.
- (a) Using the property det(AB) = det(A) det(B) prove that the determinant of a matrix is unchanged if we add a multiple of one row to another row.
 - (b) Find the determinant of the following matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 3 & 3 & 7 \end{bmatrix}$$
(1)

4. Let P_n denote the vector space of polynomials (with complex coefficients) of degree at most n-1. Let c_1, \ldots, c_n denote n complex numbers. Define a linear map $T: P_n \to \mathbb{C}^n$ by $T(f) = (f(c_1), \ldots, f(c_n))$.

(a) Let $\alpha = \{1, x, \dots, x^{n-1}\}$ be the usual basis for P_n and let β be the standard basis for \mathbb{C}^n . Prove that

$[T]^{\beta}_{\alpha} =$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	c_1 c_2	 	c_1^{n-1} c_2^{n-1}
LΙά		•••	•••	•••• m 1
	ΓT	c_n		c_n^{n-1}

(b) Prove that the determinant of the above matrix is

$$\prod_{1 \le i < j \le n} c_j - c_i.$$

[Hint: first use column operations to make the first row $[1 \ 0 \ \dots \ 0]$ and then evaluate the determinant by expanding along the first row.]

(c) Prove that T is invertible if and only if c_1, \ldots, c_n are distinct.