MAT 247, Winter 2014
 Assignment 4 Due Feb 4

1. Let T be a linear operator on a complex vector space V. Let $\lambda_{1}, \ldots, \lambda_{k}$ be the eigenvalues of T.
(a) Let $v \in V$. Prove that there exist unique vectors v_{1}, \ldots, v_{k} such that $v=v_{1}+\cdots+v_{k}$ and $v_{i} \in K_{\lambda_{i}}$ for all i.
(b) Define a linear operator $D: V \rightarrow V$ by $D(v)=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}$ and let $N=T-D$. Prove that D is diagonalizable, N is nilpotent, and $D N=N D$.
(c) Pick a basis β for V for which $[T]_{\beta}$ is a Jordan form matrix. Describe $[D]_{\beta}$ and $[N]_{\beta}$.
2. Let A be an $n \times n$ matrix with real entries. Prove that the minimal polynomial of A when considered as a real matrix is the same as the minimal polynomial of A when considered as a complex matrix.
3. (a) Using the property $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ prove that the determinant of a matrix is unchanged if we add a multiple of one row to another row.
(b) Find the determinant of the following matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \tag{1}\\
1 & 2 & 1 \\
3 & 3 & 7
\end{array}\right]
$$

4. Let P_{n} denote the vector space of polynomials (with complex coefficients) of degree at most $n-1$. Let c_{1}, \ldots, c_{n} denote n complex numbers. Define a linear map $T: P_{n} \rightarrow \mathbb{C}^{n}$ by $T(f)=\left(f\left(c_{1}\right), \ldots, f\left(c_{n}\right)\right)$.
(a) Let $\alpha=\left\{1, x, \ldots, x^{n-1}\right\}$ be the usual basis for P_{n} and let β be the standard basis for \mathbb{C}^{n}. Prove that

$$
[T]_{\alpha}^{\beta}=\left[\begin{array}{cccc}
1 & c_{1} & \ldots & c_{1}^{n-1} \\
1 & c_{2} & \ldots & c_{2}^{n-1} \\
\ldots & \ldots & \ldots & \ldots \\
1 & c_{n} & \ldots & c_{n}^{n-1}
\end{array}\right]
$$

(b) Prove that the determinant of the above matrix is

$$
\prod_{1 \leq i<j \leq n} c_{j}-c_{i}
$$

[Hint: first use column operations to make the first row [10 0 . 0] and then evaluate the determinant by expanding along the first row.]
(c) Prove that T is invertible if and only if c_{1}, \ldots, c_{n} are distinct.

