MAT 247, Winter 2014
 Assignment 5
 Due Feb 11

1. For each of the following pairs of polynomials $p(x), q(x)$, either find a matrix A whose minimal polynomial is $p(x)$ and whose characteristic polynomial is $q(x)$, or explain why no such matrix exists.
(a) $p(x)=(x-1)(x-2), q(x)=(x-1)(x-2)^{3}$
(b) $p(x)=(x-1)(x-2), q(x)=(x-1)(x-2)^{2}(x-3)$
(c) $p(x)=(x-1)^{3}, q(x)=(x-1)^{4}$
(d) $p(x)=(x-1)^{2}(x-2), q(x)=(x-1)(x-2)^{2}$
2. Consider the following matrix

$$
A=\left[\begin{array}{ccc}
5 & 1 & -4 \\
-9 & -1 & 9 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Find a Jordan form matrix similar to A.
(b) Let $T: \mathbb{C}^{3} \rightarrow \mathbb{C}^{3}$ denote the linear operator defined by $T(v)=A v$. Find a basis β for \mathbb{C}^{3} such that $[T]_{\beta}$ is a Jordan form matrix.
3. Let $T: V \rightarrow V$ be a linear operator and let $v \in V$ be a non-zero vector.

Let W be the span of $\left\{v, T(v), T^{2}(v), \ldots\right\}$.
(a) Show that W is a T-invariant subspace and that W is T-cyclic.
(b) Let $p(x)$ denote the characteristic polynomial of $\left.T\right|_{W}: W \rightarrow W$. Recall that in class we described $p(x)$ and proved that $p\left(\left.T\right|_{W}\right)=0$. Prove that $p(x)$ divides the characteristic polynomial of $T: V \rightarrow$ V.
(c) Use this to give a different proof of the Cayley-Hamilton theorem.
4. Let $p(x) \in \mathbb{F}[x]$ be a monic polynomial.
(a) Find a matrix A (with entries in \mathbb{F}) such that $\operatorname{det}(x I-A)=p(x)$.
(b) Find a matrix A (with entries in \mathbb{F}) such that the minimal polynomial of A is $p(x)$.

