MAT 247, Winter 2014
 Assignment 7
 Due March 11

1. Let $\left\{V_{i}\right\}_{i \in I}$ be a collection (possibly infinite) of vector spaces. There are two ways to take the "direct sum" of all these vector spaces. First we have the direct sum

$$
\bigoplus_{i \in I} V_{i}:=\left\{\left(v_{i}\right)_{i \in I}: v_{i} \in V_{i} \text { and } v_{i} \text { is non-zero for only finitely-many } i\right\}
$$

and we have the direct product

$$
\prod_{i \in I} V_{i}:=\left\{\left(v_{i}\right)_{i \in I}: v_{i} \in V_{i}\right\}
$$

In each case, they are vector spaces, with addition and scalar multiplication defined in the obvious way.
In each case we have inclusion map $\phi_{i}: V_{i} \rightarrow \bigoplus_{i \in I} V_{i}$ and $\phi_{i}: V_{i} \rightarrow$ $\prod_{i \in I} V_{i}$ and projection maps $\psi_{i}: \bigoplus_{i \in I} V_{i} \rightarrow V_{i}$ and $\psi_{i}: \prod_{i \in I} V_{i} \rightarrow V_{i}$.
For each of the two following statements, fill in the blank with either the direct sum or the direct product and then prove the statement.
(a) Let X be a vector space and let $T_{i}: V_{i} \rightarrow X$ be linear maps for all $i \in I$. There exists a unique linear map T : \qquad $\rightarrow X$ such that $T_{i}=T \circ \phi_{i}$ for all i.
(b) Let X be a vector space and let $U_{i}: X \rightarrow V_{i}$ be linear maps for all $i \in I$. There exists a unique linear map $U: X \rightarrow$ \qquad such that $U_{i}=\psi_{i} \circ U$ for all i.
2. Let I be any set and let

$$
\mathbb{F}[I]=\left\{\left(a_{i}\right)_{i \in I}: a_{i} \in \mathbb{F} \text { is non-zero for only finitely-many } i\right\}
$$

Let $e_{i} \in \mathbb{F}[I]$ be the "tuple" which is 1 in the i th slot and 0 elsewhere. Let X be a vector space and for each $i \in I$, let $x_{i} \in X$. Prove that there exists a unique linear map $T: \mathbb{F}[I] \rightarrow X$ such that $T\left(e_{i}\right)=x_{i}$ for all $i \in I$.
3. Given an example of an element of $\mathbb{F}^{2} \otimes \mathbb{F}^{2}$ which cannot be written as $v \otimes w$.
4. Let V and W be vector spaces. If $\alpha \in V^{*}$ and $w \in W$, define $T_{\alpha, w}$: $V \rightarrow W$ by $T_{\alpha, w}(v)=\alpha(v) w$.
(a) Prove that for any $\alpha, w, T_{\alpha, w}$ is a linear map.
(b) Define a linear map $\psi: V^{*} \otimes W \rightarrow L(V, W)$ by $\psi(\alpha \otimes w)=T_{\alpha, w}$. Prove that ψ is well-defined and that it is an isomorphism of vector spaces when V, W are finite-dimensional.
(c) Let $T \in L(V, W)$. Prove that $T=\psi(\alpha \otimes w)$ for some $\alpha \in V^{*}, w \in$ W if and only if $\operatorname{rank}(T) \leq 1$.
5. (a) Let A and B be upper-triangular square matrices. Prove that $A \otimes B$ is also upper triangular.
(b) Let $T: V \rightarrow V$ and $U: W \rightarrow W$ be linear operators. We have the linear operator $T \otimes U: V \otimes W \rightarrow V \otimes W$. If λ is an eigenvalue of T and μ is an eigenvalue of U, prove that $\lambda \mu$ is an eigenvalue of $T \otimes U$.
(c) Assume $\mathbb{F}=\mathbb{C}$. Use (a) to prove that every eigenvalue of $T \otimes U$ can be written as $\lambda \mu$ where λ is an eigenvalue of T and μ is an eigenvalue of U.

