MAT 247, Winter 2014 Assignment 8 Due March 18

- 1. The purpose of this exercise is to establish the properties of the sign of a permutation. Recall that S_n denotes the set of all permutations of $\{1, \ldots, n\}$. If σ, τ are two permutations, then $\sigma\tau$ denotes their composition, so $(\sigma\tau)(i) = \sigma(\tau(i))$. We will write *id* for the identity permutation. In this exercise, do not use the determinant of matrices.
 - (a) A simple transposition is a permutation $\sigma \in S_n$ which exchanges a pair of neighbouring elements. More precisely, there exists *i* with

$$\sigma(i+1) = i$$

$$\sigma(i) = i+1$$

$$\sigma(j) = j \text{ otherwise}$$

Prove that if $\sigma_1, \ldots, \sigma_k$ are all simple transpositions and $\sigma_1 \sigma_2 \cdots \sigma_k = id$, then k is even. Hint: one way to do this is to consider the length function $\ell(\sigma) = |\{(i, j) : i < j \text{ and } \sigma(i) > \sigma(j)\}|.$

- (b) Use (a) to prove that there exists a unique function $sign: S_n \to \{1, -1\}$ such that $sign(\sigma\tau) = sign(\sigma)sign(\tau)$ for any two permutations and $sign(\sigma) = -1$ whenever σ is a simple transposition.
- (c) Prove that $sign(\sigma) = -1$ whenever σ is any transposition.
- 2. Let V, W be two vector spaces. Let B(V, W) denote the set of all bilinear pairings $B: V \times W \to \mathbb{F}$.
 - (a) Construct a natural linear map $V^* \otimes W^* \to B(V, W)$.

- (b) Prove that this map is an isomorphism when V, W are finitedimensional.
- (c) Suppose that V, W are finite-dimensional. Construct a natural isomorphism $V \otimes W \to B(V^*, W^*)$. (This is the definition of $V \otimes W$ from Linear Algebra Done Wrong.)
- 3. Let $\mathbb{F} = \mathbb{F}_2 = \{0, 1\}$ the field with two elements. In this field 1 + 1 = 0. Let $V = \mathbb{F}^2$. Consider the linear map $\tau : V \otimes V \to V \otimes V$, defined by $\tau(v \otimes w) = w \otimes v$. Find a basis β for $V \otimes V$ such that $[\tau]_{\beta}$ is a Jordan form matrix.
- 4. Let V be a vector space with basis $\{x_1, \ldots, x_n\}$. Then every element of $V \otimes V$ can be written uniquely as $y = \sum_{1 \leq i,j \leq n} c_{ij} x_i \otimes x_j$. So every element of $V \otimes V$ can be represented by a matrix $C = (c_{ij})$. Prove that $y \in Sym^2V$ if and only if C is symmetric and that $y \in \Lambda^2 V$ if and only if C is skew-symmetric.