MAT 247, Winter 2014
 Assignment 8
 Due March 18

1. The purpose of this exercise is to establish the properties of the sign of a permutation. Recall that S_{n} denotes the set of all permutations of $\{1, \ldots, n\}$. If σ, τ are two permutations, then $\sigma \tau$ denotes their composition, so $(\sigma \tau)(i)=\sigma(\tau(i))$. We will write $i d$ for the identity permutation. In this exercise, do not use the determinant of matrices.
(a) A simple transposition is a permutation $\sigma \in S_{n}$ which exchanges a pair of neighbouring elements. More precisely, there exists i with

$$
\begin{aligned}
\sigma(i+1) & =i \\
\sigma(i) & =i+1 \\
\sigma(j) & =j \text { otherwise. }
\end{aligned}
$$

Prove that if $\sigma_{1}, \ldots, \sigma_{k}$ are all simple transpositions and $\sigma_{1} \sigma_{2} \cdots \sigma_{k}=$ $i d$, then k is even. Hint: one way to do this is to consider the length function $\ell(\sigma)=\mid\{(i, j): i<j$ and $\sigma(i)>\sigma(j)\} \mid$.
(b) Use (a) to prove that there exists a unique function sign : $S_{n} \rightarrow$ $\{1,-1\}$ such that $\operatorname{sign}(\sigma \tau)=\operatorname{sign}(\sigma) \operatorname{sign}(\tau)$ for any two permutations and $\operatorname{sign}(\sigma)=-1$ whenever σ is a simple transposition.
(c) Prove that $\operatorname{sign}(\sigma)=-1$ whenever σ is any transposition.
2. Let V, W be two vector spaces. Let $B(V, W)$ denote the set of all bilinear pairings $B: V \times W \rightarrow \mathbb{F}$.
(a) Construct a natural linear map $V^{*} \otimes W^{*} \rightarrow B(V, W)$.
(b) Prove that this map is an isomorphism when V, W are finitedimensional.
(c) Suppose that V, W are finite-dimensional. Construct a natural isomorphism $V \otimes W \rightarrow B\left(V^{*}, W^{*}\right)$. (This is the definition of $V \otimes W$ from Linear Algebra Done Wrong.)
3. Let $\mathbb{F}=\mathbb{F}_{2}=\{0,1\}$ the field with two elements. In this field $1+1=0$. Let $V=\mathbb{F}^{2}$. Consider the linear map $\tau: V \otimes V \rightarrow V \otimes V$, defined by $\tau(v \otimes w)=w \otimes v$. Find a basis β for $V \otimes V$ such that $[\tau]_{\beta}$ is a Jordan form matrix.
4. Let V be a vector space with basis $\left\{x_{1}, \ldots, x_{n}\right\}$. Then every element of $V \otimes V$ can be written uniquely as $y=\sum_{1 \leq i, j \leq n} c_{i j} x_{i} \otimes x_{j}$. So every element of $V \otimes V$ can be represented by a matrix $C=\left(c_{i j}\right)$. Prove that $y \in S y m^{2} V$ if and only if C is symmetric and that $y \in \Lambda^{2} V$ if and only if C is skew-symmetric.

