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1 Introduction

In these notes, we will study constructible sheaves on algebraic varieties. Our main reference is
[Ach], and we will focus on varieties over C with the complex topology. So our spaces will be
Hausdorff, locally compact and locally simply connected. Constructible sheaves are sheaves that
are “glued from” local systems. In this and later talks, we will see that the derived category
of constructible sheaves on a variety contains local systems and is closed under the six functors
introduced in [Bai18]. We start by studying the behavior of the functors for various class of
morphisms.

2 Pullbacks and pushforwards under algebraic morphisms

2.1 (Quasi-)finite morphisms

Definition 2.1 ([Ach], p190.). A morphism of varieties f : X → Y is quasi-finite if f−1(y) is
a finite set for each point y ∈ Y , and it is finite if it is quasi-finite and proper.

Example 2.2. Examples of finite morphisms include:

1. Closed immersions.

2. Any polynomial morphism C→ C.

Example 2.3. An open inclusion U ↪→ X is quasi-finite but not finite (as it is not a closed
morphism).

Lemma 2.4 ([Ach], Lemma 3.1.5). Let f : X → Y be a finite morphism. Then of∗ : Sh(X) →
Sh(Y ) is exact. Moreover, for any sheaf F ∈ Sh(X), we have supp of∗(F) = f(suppF).

Proof. We already know that of∗ is left-exact, we just need to show that f∗(F) ∈ Sh(Y ) (i.e. it
has no higher direct images). We will show that the stalks f∗(F)y are concentrated in degree 0.
Consider the diagram

X ×Y y = f−1(y) �
� g′ //

f ′

��

X

f

��
y �
� g // Y
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Note that the stalk f∗(F)y is g∗f∗(F). Since f is proper, f! = f∗ and by proper base change

([Bai18], Theorem 3.25) we have g∗f∗ ∼= f ′∗g
′∗. Therefore (f∗F)y = f ′∗g

′∗ = RΓ
(
F
∣∣
f−1(y)

)
, as f ′ is

the map to a point. Since f is finite, f−1(y) is a finite set, so

RΓ
(
F
∣∣
f−1(y)

)
∼= Γ

(
F
∣∣
f−1(y)

)
∼=

∏
x∈f−1(y)

Fx,

as desired.
Now we show that supp of∗(F) = f(suppF). Note that supp of∗(F) ⊆ f(supp(F)), as f(supp(F))

is closed since f is proper (and hence a closed morphism). For the opposite inclusion, let
S = {x ∈ X|Fx 6= 0}. By definition, S is dense in suppF . We just computed of∗F at all
points of f(S) above and we found that they were nonzero. As f(S) is dense in f(suppF), and
all the stalks were nonzero, f(supp(F)) ⊆ supp of∗(F).

Q.E.D.

Remark 2.5. To see that finiteness is necessary for the statement about supports, consider an
open inclusion j : U ↪→ X and F = CU . Then j(supp(F)) = U but supp(oj∗(F)) = supp(CX).

3 Smooth and Étale morphisms

Definition 3.1. [[Ara10], Definition 18.1.7] A morphism f : X → Y of schemes is said to be
smooth of relative dimension d at p ∈ X if there is

• Am affine Zariski-open neighborhood Y 0 of f(p),

• An affine Zariski-open neighborhood of p in f−1(Y 0) ⊆ X

• A commutative diagram

• and

rank

(
∂fi
∂xj

(p)

)
= n.

The morphism is smooth if it is smooth at all p ∈ X.

Remark 3.2. This is not the standard definition of a smooth morphism, to see the comparison to
the more standard definition ([Har77], Definition 10.0), see [Ara10], Theorem 18.1.10.

A smooth morphism an the algebraic analogue of a submersion.

Proposition 3.3 ([Har77], Proposition 10.4). Let f : X → Y be a morphism of nonsingular
varieties and m = dimX − dimY . Then f is smooth of relative dimension m if and only if
for every closed point x ∈ X, the induced map on Zariski tangent spaces Tf : TxX → Tf(x)Y is
surjective.

Example 3.4. Examples of smooth morphisms include:

1. The projection pr2 : X × Y → Y for any smooth variety X.
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2. The map X → pt is smooth if and only if X is a smooth variety.

3. Any open embedding is smooth (of relative dimension 0).

Example 3.5. Non-examples of smooth morphisms include:

1. Families with singular fibers, for example C2 → C given by (x, y) 7→ xy is not smooth at
(0, 0).

2. If dimX < dimY , then no morphism X → Y is smooth.

Exercise 3.6. Show that smoothness is preserved under base change. As a corollary, deduce that
fibers of a smooth morphism are smooth varieties.

A morphism of smooth varieties is smooth generically in the following sense

Theorem 3.7 (Generic smoothness, [Ach], Theorem 3.1.3, [Har77], Corollary 10.7). Let f : X →
Y be a morphism of varieties and assume that X is smooth. Then there is a nonempty Zariski-open
subset U ⊆ Y such that f

∣∣
f−1(U)

: f−1(U)→ U is a smooth morphism.

Example 3.8. The family in example 3.5, C2 → C, (x, y) 7→ xy is smooth away from (0, 0), as

rank
(
∂(xy)
∂x

∂(xy)
∂y

)
= rank

(
y x

)
Definition 3.9. An étale morphism is a smooth morphism of relative dimension 0.

Remark 3.10. Any étale morphism is quasi-finite.

Lemma 3.11 ([Ach] Lemma 3.1.4). An étale morphism is a local homeomorphism, in particular,
a finite étale morphism is a covering map.

Pullbacks by smooth morphisms are really well-behaved:

Theorem 3.12. [Smooth base change, [Ach] Theorem 3.3.4] Suppose we have a cartesian square
of varieties

X ′
g′ //

f ′

��

X

f
��

Y ′
g // Y

Assume that g and g′ are smooth. Then, for F ∈ D+(X), the base change map g∗f∗F → f ′∗(g
′)∗F

is an isomorphism.

Compare this to [Bai18], Theorem 6.3 (base change for locally trivial fibrations). The base
change map is an isomorphism if we are pushing forward a complex whose cohomology groups
are local systems by a locally trivial fibration or if we are pulling back any complex by a smooth
morphism.
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Remark 3.13. To see how smoothness is necessary, consider X = C×, with the map ι : X →
Y = C. Then we have the pullback diagram

∅ = ι−1(0) �
� g′ //

ι′

��

X

ι

��
0 �
� g // Y

Consider the constant sheaf CX on X. Then ι∗CX
∼= CY , as the preimage of each open connected

set is connected. Therefore
g∗ (ι∗CX) = (ι∗CX)0

∼= C.
Going the other way, since ι−1(0) = ∅, we get that ι′∗g

∗(CX) = 0.

To prove the theorem, we need a technical lemma first, which is a concrete demonstration that
smooth maps are like submersions in differential geometry. Submersions can locally be written
as a projection map from a vector space to a subspace using an implicit function theorem type
argument, which is what the following lemma does:

Lemma 3.14. [[Ach], Lemma 3.3.1] Let f : X → Y be a smooth morphism of relative dimension
d. For any point p ∈ X, there is a neighborhood U of p, a neighborhood V of f(p) (in the complex
topology), a small disk D ⊆ Cd, and a biholomorphism (invertible holomorphic map) b : U → V ×D
such that the following diagram commutes:

U

f
��

b // V ×D

pr1
{{

V

Proof. Since the statement is local, by definition 3.1, we may assume that X and Y are affine
varieties, and that f is given by pr1 : Spec (C[Y ][x1, . . . xd+n]/(g1, . . . gn)) → SpecC[Y ]. We may
also assume that the matrix (

∂gi
∂xj

)
1≤i≤n,k+d+1≤j≤k+d+n

(p)

(formed by the last columns of the Jacobian matrix) is nonsingular. Let p = (q, p′, p′′), where
q ∈ Ck, p′ ∈ Cd, and p′′ ∈ Cn. The implicit function theorem tells us that there is an open subset
W1 ⊆ Ck+d containing (q, p′), an open subset W2 ⊆ Cn containing p′′ and a holomorphic map
h0 : W1 → W2 such that

h : W1 → g−1(0) ∩ (W1 ×W2) given by h(u) = (u, h0(u))

(where g = (g1, . . . , gn)) is a bijection. Moreover h has an inverse b given by the projection map
Ck+d+n → Ck+d onto the first k + d coordinates.

Now replace W1 by a smaller open set of the form V0×D where V0 ⊆ Ck contains q and D ⊆ Cd

is an open set containing p′ and is homeomorphic to Cd. Let U0 = V0 ×D ×W2. Then we have

g−1(0)× U0

pr1

��

V0 ×D

pr1
ww

hoo

V0

(note that h is a biholomorphism). Letting U = U0 ∩X and V = V0 ∩ Y finishes the proof.
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Q.E.D.

Now we are ready to give a proof of the smooth base change theorem

Proof. (of Thm. 3.12) Let p ∈ Y ′, and pick U ⊆ Y ′ containing p ,V ⊆ Y containing g(p), and
M ⊆ Cd as in lemma 3.14 above. Since p is arbitrary, is enough to show that the map ([Daw18],
Lemma 4.1.2) g∗f∗F → f ′∗(g

′)∗F is an isomorphism after restriction to U . This means that we
have the diagram (slight abuse of notation)

(f ′)−1(U)
g′ //

f ′

��

f−1(V )

f
��

U g
// V

which, by lemma 3.14 can be replaced by

(f)−1(V )×M g′ //

f ′

��

f−1(V )

f

��
V ×M pr1

// V

and the map pr∗1f∗F → f ′∗pr
∗
1F is an isomorphism by [Ach], Proposition 2.12.1.

Q.E.D.

The next result involving smooth morphisms is the “relative version of Poincaré duality”:

Theorem 3.15. [[Ach], Theorem 3.3.8] Let f : X → Y be a smooth morphism of relative dimen-
sion d. There is a natural isomorphism of functors f ! ∼= f ∗[2d].

Proof. We will prove the theorem in the special case where Y is a point and d = dimCX. We
proceed in multiple steps.

Step 1: We show that f !Cpt is a local system of rank 1 in degree 2d. Let j : U ↪→ X be an
inclusion of a disk. Then as j is an open immersion, j∗ = j!. Therefore j!f !Cpt = (f ◦ j)!Cpt =
H∗c (U) ∼= CU [2d]. Also, since j is an open inclusion, this means that f !Cpt is a rank 1 local system
on X in cohomological degree 2d.

Step 2: We recall Poincaré duality with coefficients in a local system L. This is the following
statement: (

Hk
c (X,L∗)

)∗ ∼= H2d−k(X,L), (1)

where L∗ is the dual local system . The proof is the same as for the usual Poincaré duality (which
is the case where L = CX).

Step 3: Since rank 1 local systems on X form a full subcategory, to show that f !Cpt
∼=

f ∗Cpt[2d], by the Yoneda lemma it suffices to check that

RHomD(X)(L, f !Cpt)
∼= RHomD(X)(L, f ∗Cpt[2d])
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for any rank 1 local system L on X. By adjunction between f! and f !, we have

RHomD(X)(L, f !Cpt)
∼= RHomD(pt)(f!L,Cpt) (2)

The right hand side of equation 2 is (RΓc(X,L))∗ and taking −k-th cohomology groups yields
Hk
c (X,L∗). The left hand side of equation 2 is RHomD(X)(L,CX [2d]) = RΓ(X,L[2d]). Taking
−k-th cohomology groups yields H2n−k(X,L). These are isomorphic by 1. So the two objects
have isomorphic cohomology, and since they are objects in D(pt) ∼= D(VecC), this means that the
complexes are isomorphic. Since L was arbitrary, this completes our proof.

For a full proof, see [Ach], Theorem 3.3.8.

Q.E.D.

The next result isn’t about smooth morphisms, but it will be very useful for us when we start
pushing around local systems:

Theorem 3.16 ([Ach], Theorem 3.3.10). Let X be a smooth, equidimensional variety and let Y
be a smooth locally closed equidimensional subvariety. Let h : Y ↪→ X be the inclusion map, and
let d = dimX − dimY . For L ∈ Loc(X), there is a natural isomorphism h!L ∼= h∗L[−2d].

Proof. Let D ⊆ X be an open disk. Let V = D∩Y and let h′ = h
∣∣
D

. Let j : D ↪→ X, j′ : V ↪→ Y
be the inclusion maps. Then we have the diagram

V �
� h′ //� _

j′

��

D� _
j
��

Y �
�

h
// X

As j is an open inclusion, j! = j∗ by [Ach], Lemma 2.4.7. We want to show (h′)!
(
L
∣∣
D

)
= (h!L)

∣∣
V

.

(h′)!
(
L
∣∣
D

)
= (h′)!j∗L
= (h′)!j!L as j! = j∗

= (j ◦ h′)!L by [Bai18], Proposition 3.29

= (h ◦ j′)!L as the diagram is Cartesian

= (j′)∗h!L
= (h!L)

∣∣
V

Let M = L
∣∣
D

= j∗L = j!L. Then M must be a constant sheaf MD. Let n = dimX. Then by
theorem 3.15, we have

MD
∼= MX

∣∣
D
∼= (a!XMpt[−2n])

∣∣
D
,
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where aX : X → pt. By the same argument, if m = dimY (so d = m− n), and aY : Y → pt,

(h!L)
∣∣
V

= (j′)!h!(L)

∼= (h′)!j!(L)

∼= (h′)!(a!XMpt[−2n])
∣∣
D

∼= (a!YMpt)
∣∣
V

[−2n])

∼= MY

∣∣
V

[2m− 2n]

∼= (h∗L)
∣∣
V

[−2d]

We can cover Y by open sets V as above. On each of these, the two sheaves h!L and h∗L[−2d]
agree, and the sheaves glue the same way (the isomorphism commutes with restriction maps).
Therefore the two sheaves must be isomorphic.

Q.E.D.

Example 3.17. Let Y = {0}, X = C, f : Y ↪→ X. Then as we computed during Roger’s talk,
f !CX = Cpt[−2].

4 Stratifications

Definition 4.1 (Definition 3.4.1 in [Ach]). Let X be a variety. A stratification on X is a finite
collection (Xs)s∈S of disjoint smooth, connected, locally closed subvarieties such that X =

⋃
s∈S Xs,

and such that the closure of each stratum is a union of strata Xt =
⋃
s≤tXs for some partial order

on S.

Definition 4.2. The subvarieties Xs are called the strata of the stratification.

Remark 4.3. The set S carries a natural partial order called the closure partial order given
by

t ≤ s if Xt ⊆ Xs.

Example 4.4. If an algebraic group G acts on a variety X with finitely many orbits then the
orbits constitute a stratification of X, for example:

1. The cell decomposition

CPn =
n⊔
i=0

Ci

defines a stratification on CPn. In this case, the closure partial order is total order.

2. Let Gr(k, n) be the Grassmannian of k-planes in Cn. Let’s represent a k-plane by the k × n
matrix in reduced row echelon form whose row span is the k-plane. Each of the non-pivot
columns of the matrix have some entries that must be zero, and some that can be arbitrary,
e.g. (k = 3, n = 6): 0 1 0 ∗ 0 ∗

0 0 1 ∗ 0 ∗
0 0 0 0 1 ∗

 .
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Forgetting the pivot columns then gives us a partition that fits into a k × (n− k) rectangle:0 ∗ ∗
0 ∗ ∗
0 0 ∗


corresponds to

.

This defines a stratification (in fact, a cell decomposition) of Gr(k, n) into affine spaces
Xλ
∼= C|λ|. The closure partial order is given by containment of Young diagrams.

3. Let G be semisimple with Borel subgroup B. Then by the Bruhat decomposition, B acts on
the flag variety G/B with finitely many orbits. The strata BwB/B ∼= Cl(w) are known as
Bruhat cells. Here S = W , the Weyl group of G, and the closure partial order is Bruhat
order.

If all of the strata in a stratification are affine spaces, the stratification S is also known as an
affine paving of X.

Definition 4.5 (Definition 3.4.4 in [Ach]). Let X be a variety. A filtration of X by smooth
varieties is a finite collection (Xs)s∈S of disjoint smooth, connected, locally closed subvarieties
such that X =

⋃
s∈S Xs, and such that the elements of S can be ordered as S = {s1, s2, . . . , sm} in

such a way that for each i, the subset

Xs1 ∪Xs2 ∪ . . . ∪Xsi

is a closed subset of X.

Remark 4.6. Any stratification can be made into a filtration by smooth varieties, by picking a
linear extension (order-preserving map to a total order) of S.

Filtrations by smooth varieties can be used to study singular varieties in the following way:
let X be an irreducible variety, and Xsing be the singular locus. Then Y = X \Xsing is an open
connected smooth variety. Iterating taking smooth locus, we can produce a filtration of X by
smooth varieties ([Ach], Remark 3.4.5).

Remark 4.7. A filtration by smooth varieties is a weaker notion than a stratification, for example,
let [x, y, z] be homogeneous coordinates on CP2. Then

{y = 0}, {z = 0, y 6= 0}, {y 6= 0, z 6= 0}

is a filtration by smooth varieties that is not a stratification.
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