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Classical mathematical pendulum

config. space: S1 = R/(2πZ). Coordinate: α.
phase space: T ∗S1 = S1 × R. Coordinates: (α, p).
symplectic form: ω = d(p dα) = −dΘ.

Hamiltonian:
H : T ∗S1 → R : (α, p) 7→ 1

2
p2 − cosα+ 1.

Hamiltonian vector field: p ∂
∂α
− sinα ∂

∂p
.

Hamilton’s equations: dα
dt

= p and dp
dt

= − sinα.
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The graph of H
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Action angle coordinates

action:
I = 1

2π

∫
C(e)

Θ = 1
2π

∫
C(e)

p dα,
where C(e) is connected component of H−1(e)

angle: θ = 2π
T
t, where T = 4

∫ π/2
0

1√
1− e

2
sin2ϕ

dϕ

is the period of integral curve of XH parametrizing
C(e). I is an integral of XH .
Poisson bracket: {I, θ} = −1.
Symplectic form: ω = dI ∧ dθ.
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Quantum mathematical pendulum

quantum line bundle:
ρ : L = C× T ∗S1 → T ∗S1 :

(
z, (α, p)

)
7→ (α, p).

connection 1-form: λ = dz − i
~Θ.

covariant derivative: ∇Xσ0 = −i~ (X Θ)σ0.

σ0 : T ∗S1 → L : (α, p) 7→
(
1, (α, p)

)
and X a

vector field on T ∗S1.

polarization D of T ∗S1: integral curves of XH .

quantum states: smooth sections of L which are
covariantly constant along D
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Bohr-Sommerfeld quantization

Bohr-Sommerfeld torus is C(e) with 0 < e < 2 or
e > 2 such that 1

2π

∫
γ

Θ = n ~ with n ∈ Z. γ is
an integral curve of XH parametrizing C(e). When
e = 0, n = 0.
Bohr-Sommerfeld quantum state is a smooth section
σ of ρ : L → T ∗S1 restricted to a union of Bohr-
Sommerfeld tori, which is covariantly constant.

f ∈ C∞(T ∗S1) is Bohr-Sommerfeld quantizable if it is
constant on each Bohr-Sommerfeld torus.
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Hilbert space

Hilbert space H has basis {σ|C} of Bohr-Sommerfeld quan-
tum states with inner product making distinct states
orthogonal.
Subspaces H0,± spanned by sections σ0,± with support C
in P0 = {(α, p) ∈ T ∗S1 H(α, p) < 2}
or in P± = {(α, p) ∈ T ∗S1 ∓ p > 0 & H(α, p) > 2}.

Bases: For C ⊆ P0 with N the largest integer such that
2π~N < I(2), {σ0

n}
N

n=0 is a basis of H0. For C ⊆ P± with
M the smallest integer such that 2M ≥ N + 1, {σ±m}

∞
m=M

is a basis of H±. H = H0 ⊕ H+ ⊕ H−.
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Transition operators

raising operator: bσ0
n = σ0

n+1 for n = 0, 1, . . . , N − 1;
bσ±m = σ±m+1 for m = M + 1, . . . .

lowering operator: aσ0
n = σ0

n−1 for n = 1, . . . , N & a0 = 0;
aσ±m = σ±m−1 for m = M + 1, . . . .

quantum state transition structure:

σ0
0 � σ0

1 � · · ·� σ0
N

↙↗ σ+
M � σ+

M+1 � · · ·

↘↖ σ−M � σ−M+1 � · · ·
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Corresponding quantum operators

(I0,±, θ0,±) action angle coordinates on P0,±.
Commutation relations:

[QI0 ,b]σ0
n = i~σ0

n, n = 0, . . . , N − 1;
[QI± ,b]σ±m = i~σ±m, n = M, . . .;
[QI0 ,a]σ0

n = −i~σ0
n, n = 1, . . . , N ;

[QI± ,a]σ±m = −i~σ±m, m = M + 1, . . . .
Because {I0,±, θ0,±} = −1,

[QI0,± , Qe
∓iθ0,± ]σ0,±

n,m = ±i~Q
e
∓iθ0,±σ

0,±
n,m.

Identify b with Q
e
−iθ0,± and a with Q

e
+iθ0,± .
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Z2 symmetry

classical Z2 symmetry of (H,T ∗S1, ω) generated by

ζ : T ∗S1 → T ∗S1 : (α, p) 7→ (−α,−p).

quantum Z2 symmetry of (ρ : L→ T ∗S1, λ). On
bundle space L generated by

µ : L→ L :
(
z, (α, p)

)
7→
(
z, ζ(α, p)

)
.

On sections Γ(ρ) generated by

µ∗ : Γ(ρ)→ Γ(ρ) : σ 7→ µ∗σ = µ−1 ◦σ ◦ ζ.
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Parity operator

parity operator: P : h→ h : σ|C 7→ µ∗(σ|C).
properties:
1) µ∗ generates a representation of Z2 on H.
2) P0,± = P|H0,± : H0,± → H0,∓ is bijective
with P−1

0 = P0 and P−1
± = P∓. Adjust inner product on

H so that Pσ±|C = σ∓|C .
3) Set Heven = {σ|C ∈ H Pσ|C = σ|C} and
Hodd = {σ|C ∈ H Pσ|C = −σ|C}. Then H = Heven ⊕Hodd.
4) if σ|C ∈ Heven,odd∩H0, then its quantum number is even,
odd, respectively.
5) invariance of H under Z2 action gives [QH ,P] = 0.
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Z2-reduced classical system

algebra of real analytic Z2-invariant functions generated by
τ1 = cosα, τ2 = p sinα and τ3 = 1

2
p2 − cosα+ 1.

relation:

0 = 1
2
τ22 − (τ3 + τ1 − 1)(1− τ21 ), |τ1| ≤ 1 & τ3 ≥ 0

defines the reduced space P∨ = T ∗S1/Z2.
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The reduced space P_.
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reduced Hamiltonian:

H∨ : P∨ ⊆ R3 → R : τ = (τ1, τ2, τ3) 7→ τ3.

reduced Poisson bracket:
{τ1, τ2} = τ21 − 1,
{τ2, τ3} = 2τ1(τ3 + τ1 − 1) + τ22 − 1,
{τ3, τ1} = τ2.

reduced equations of motion:
τ̇1 = {τ1, τ3} = −τ2,
τ̇2 = {τ2, τ3} = 2τ1(τ3 + τ1 − 1) + τ21 − 1,
τ̇3 = {τ3, τ3} = 0.
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Z2 reduction map:
π∨ : T ∗S1 → P∨ ⊆ R3 : (α, p) 7→ τ(α, p)

is 2 to 1 branched covering map branched at p∨0 = (1, 0, 0)

and p∨2 = (−1, 0, 2) corresponding to fixed points p0 =

(0, 0) and p2 = (π, 0) of Z2 action on T ∗S1.
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Reduced action angle coordinates

on P∨reg = P∨ \ {p∨0 , p∨2 } with symplectic form ω∨ = dΘ∨

Θ∨ = ∓
√

2(τ3+τ1−1)

1−τ21
, ±τ2 ≥ 0.

reduced action:
I∨ = 1

2π

∫
C∨(e) Θ∨ = 1

π

∫ 1

max(1−e,1)

√
2(e+τ1−1)

1−τ21
dτ1

when 0 < e < 2 or e > 2.
period of reduced motion on C∨(e):

T∨ = 2
∫ 1

−1
dτ1√

2(e+τ1−1)(1−τ21 )
.

reduced angle: θ∨ = 2π
T
t, t ∈ [max(1− e, 1), 1].
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Z2 reduced quantum system

reduced quantum line bundle:(
ρ∨ : L∨ = P∨reg × C→ P∨reg, λ

∨ = π∨∗ (λ)
)
.

reduced covariant derivative:
∇∨X∨σ∨0 = −i~ (X∨ Θ∨)σ∨0 ,

σ∨0 : P∨reg → L∨ : τ 7→ (1, τ). X∨ is a vector field on P∨.
reduced Bohr-Sommerfeld condition:

I∨ = 1
2π

∫
C∨(e) Θ∨ = k ~, for some k ∈ Z≥0.

Image of Bohr-Sommerfeld torus in T ∗S1 by reduction map
π∨ is Bohr-Sommerfeld torus of reduced system in P∨reg.
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Reduced quantum states

reduced quantum states: smooth section σ∨k , k ≥ 0 of bundle
ρ∨ which are covariantly constant with support a Bohr-
Sommerfeld torus (I∨)−1(k~).
reduced Hilbert space H∨ has basis {σ∨k }∞k=0.
reduced raising operator:

b∨σ∨k = σ∨k+1 for k ≥ 0

reduced lowering operator:
a∨σ∨k = σ∨k−1 for k > 0 and a∨σ∨0 = 0.

reduced quantum state transition structure:
σ∨0 � σ∨1 � · · ·� σ∨k � · · ·
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isomorphism: R : Heven → H∨ sends the basis
{σ0

2k, k = 1, . . . ,K;σ+
m + σ−m, m ≥M}

to the basis {σ∨k , k = 1, . . . ,K;σ∨m, m ≥M}.
2M =

N + 2, if N even

N + 1, if N odd
and 2K =

 N, if N even

N − 1, if N odd.

lift of reduced raising operator: beven = R−1b∨R. beven

raises the quantum number n by 2 if 0 ≤ n + 2 ≤ N and
raises the quantum number m by 1 if m ≥M .

lift of reduced lower operator: aeven = R−1a∨R. aeven

lowers the quantum number n by 2 if 2 ≤ n ≤ N and
lowers the quantum number m by 1 if m ≥M + 1.
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shifting quantum states across the singular level H−1(2).

When N = 2K and M = K + 1, σ0
N = σ0

2K ∈ Heven ∩ H0

and σ+
M + σ−M = σ+

K+1 + σ−K+1 ∈ Heven ∩ (H+ ⊕ H−). So
Rbevenσ0

N = Rbevenσ
0
2K = b∨σ0

2K = b∨σ∨K
= σ∨K+1 = σ∨M = R(σ+

M + σ−M ),
that is, pr±(bevenσ0

N ) = σ±M , where
pr± : H+ ⊕ H− → H± : σ+

M + σ−M 7→ σ±M .
Similarly, aeven(σ+

M + σ−M ) = σ0
N .
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When N = 2K + 1 and M = K + 1, σ0
N = σ0

2K+1

∈ Hodd ∩ H0. Then σ0
N−1 = σ0

2K ∈ Heven ∩ H0.
Also σ+

M + σ−M ∈ Heven ∩ (H+ ⊕ H−). Thus
bevenσ0

N−1 = σ+
M + σ−M .

So (bevena)σ0
N = σ+

M + σ−M , that is,
pr±

(
(bevena)σ0

N

)
= σ±M .
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