Bohr-Sommerfeld Quantum Systems Shifting Operators

Jędrzej Śniatycki

Based on joint work with Richard Cushaman

University of Calgary

10 December 2019

Bohr-Sommerfeld theory of a completely integrable system

• Phase space
$${\cal P}={\cal T}^*{\mathbb R}^k$$
 with coordinates $(p_i,q_i)\equiv ({f p},{f q})$

$$\omega = \sum_i dp_i \wedge dq_i = d\mathbf{p} \wedge d\mathbf{q}.$$

- $(f_1, ..., f_k)$ inedpendent functions on P.
- $D = \operatorname{span}(X_{f_1}, ..., X_{f_k})$.

Theorem

Quantum states of the system are concentated on integral manifolds M of D such that, for every closed loop $\gamma: S^1 \to M \subset T^* \mathbb{R}^3$, there exists an integer n such that

$$\oint \gamma^* \mathbf{p} d\mathbf{q} = nh$$
,

where h is Planck's constant.

- Compact Integral manifolds *M* of *D* satisfying Bohr-Sommerfeld conditions are called Bohr-Sommerfeld.
- We denote by \mathfrak{B} the set of of Bohr-Sommerfeld tori.

Fate of Bohr-Sommerfeld theory

- In 1915, A. Sommerfeld applied it to the bounded states of the relativistic hydrogen atom. His result are in exact agreement with observations.
- Attempts to apply Bohr-Sommerfeld theory to helium atom failed to provide useful results.
- In 1925, Heisenberg criticized Bohr-Sommerfeld theory for not providing transition operators between different states.
- For a long time the Bohr-Sommerfeld theory has been known mainly for its agreement with the quasi-classical limit of Schrödinger theory.
- Nevertheless, it has been consistently used by quantum chemists in their study of chemical bonds..
- In 1975, I showed that Bohr-Sommerfeld conditions are necessary and sufficient conditions for existence of sections of the prequantization line bundle that are covariantly constant along integral manifolds *M* of *D*.

Geometric quantization in a toric polarization.

- Assume that integral manifolds of $D = \text{span}(X_{f_1}, ..., X_{f_k})$ are Lagrangian k-tori in (P, ω) .
- $\pi: L \to P$ is the prequantization line bundle of (P, ω) .
- π[×]: L[×] → P is the associated principal fibre bundle of L; it may be visualized as L with zero section removed.
- For each f ∈ C[∞](P) there exists a vector field Z_f on L[×], π[×]-related to X_f, preserving the connection form.
- The flow of Z_f on L[×] is the parallel transport along integral curves of X_f multiplied by a phase factor.

$$e^{tZ_f} = e^{-2\pi i t f/h} e^{t \operatorname{lift} X_f}$$
(1)

- The space S of sections σ of L that are covariantly constant along D, is supported on the union of Bohr-Sommerfeld tori.
- For i = 1, ..., n, the quantum operator \mathbf{Q}_f acting on $\sigma \in \mathfrak{S}$ is

$$\mathbf{Q}_{f}\sigma = i\hbar \frac{d}{dt} \left(\mathrm{e}^{tZ_{f}} \right)_{*} \sigma = f\sigma.$$
⁽²⁾

Action angle coordinates

• Action angle coordinates $(\mathbf{j}, \boldsymbol{\vartheta}) = (j_1, ..., j_k, \vartheta_1, ..., \vartheta_k)$ are maps from an open set U in P to $\mathbb{R}^k \times \mathbb{T}^k$, where each $\vartheta_i : U \to \mathbb{T} = \mathbb{R}/\mathbb{Z}$ is interpreted as a multi-valued real function, such that

$$\omega_{|U} = \sum_{i=1}^{k} \mathrm{d}j_{i} \wedge \mathrm{d}\vartheta_{i}. \tag{3}$$

 In action-angle coordinates (j₁, ..., j_k, ϑ₁, ..., ϑ_k), Bohr-Sommerfeld tori are given by equations

$$j_i = n_i h, \tag{4}$$

where n_i are integers.

• If the domain U' of $(\mathbf{j}', \boldsymbol{\vartheta}') = (j'_1, ..., j'_k, \boldsymbol{\vartheta}'_1, ..., \boldsymbol{\vartheta}'_k)$ has non empty intersection with U then, in $U \cap U'$,

$$j_i = \sum_{l=1}^k a_{il} j'_l$$
 and $\vartheta_i = \sum_{l=1}^k a_{il} \vartheta'_l$. (5)

where $A = (a_{ij})$ and $B = (b_{ij})$ have integer entries, and $B = (A^{-1})^T$.

Shifting operators

The simplest case

•
$$U = \mathbb{R}^k \times \mathbb{T}^k$$
, $\omega = \sum_{i=1}^k dj_i \wedge d\vartheta_i$. For each $i = 1, ..., k$ set $X_i = -\frac{\partial}{\partial j_i}$.
 $X_i \sqcup \omega = -d\vartheta_i$

is well defined. Since ϑ_i is multi-valued, X_i is a local Hamiltonian vector field and ϑ_i gives it local Hamiltonians.

 Equation (1) with f = v_i is multi-valued because the phase factor is multivalued,

$$e^{tZ_{\vartheta_i}} = e^{-2\pi i t\vartheta_i / h} e^{t \text{lift}X_i}.$$
(6)

• If t = h, then

$$\mathrm{e}^{hZ_{X_i}} = \mathrm{e}^{-2\pi i\vartheta_i} \mathrm{e}^{h\mathrm{lift}X_i} \tag{7}$$

is well defined. It depends only on X_i and not the choice of the local Hamiltonian ϑ_i .

• One could use covering of \mathbb{T}^k by contractible open sets V_{α} , take $W_{\alpha} = U \times V_{\alpha}$ and in each W_{α} choose a representative $\theta_{i\alpha}$ of $\vartheta_{i|W_{\alpha}}$ to obtain the same result.

Note that

$$e^{hZ_{X_i}}: L^{\times} \to L^{\times}: I^{\times} \mapsto e^{hZ_{X_i}}I^{\times} = e^{-2\pi i\vartheta_i}e^{h \text{lift}X_i}I^{\times}$$
(8)

- is the unique lift of the symplectomorphism $e^{hX_i}: U \to U$ to a connection preserving automorphism of the prequantization line bundle
- Since $L = (L^{\times} \times \mathbb{C})/\mathbb{C}^{\times}$, the action of $e^{hZ_{X_i}}$ on L^{\times} gives an action $e^{hZ_{X_i}} : L \to L : I = [I^{\times}, c] \mapsto [(e^{hZ_{X_i}}I^{\times}, c)].$ (9)
- The automorphism $\mathfrak{E}^{hZ_{\chi_i}}$ of *L* acts on sections of $\pi: L \to U$ by pull-backs and push-forwards

$$\begin{pmatrix} \mathbf{e}^{hZ_{\chi_{i}}} \end{pmatrix}_{*} \sigma(p) = \mathbf{e}^{-hZ_{\chi_{i}}} \left(\sigma \left(e^{hX_{i}}(p) \right) \right)$$
(10)
$$= e^{-2\pi i \vartheta_{i}} \cdot \mathbf{e}^{-h \operatorname{lift} X_{i}} \left(\sigma \left(e^{hX_{i}}(p) \right) \right),$$
$$\begin{pmatrix} \mathbf{e}^{hZ_{\chi_{i}}} \end{pmatrix}^{*} \sigma(p) = \mathbf{e}^{hZ_{\chi_{i}}} \left(\sigma \left(e^{-hX_{i}}(p) \right) \right) = e^{2\pi i \vartheta_{i}} \cdot \mathbf{e}^{h \operatorname{lift} X_{i}} \left(\sigma \left(e^{-hX_{i}}(p) \right) \right)$$

Theorem

۵

The linear maps $\sigma \mapsto \left(\mathbf{e}^{hZ_{X_i}}\right)_* \sigma$ and $\sigma \mapsto \left(\mathbf{e}^{hZ_{X_i}}\right)^* \sigma$ preserve the space \mathfrak{S} of Bohr-Sommerfeld quantum states. Their restrictions to \mathfrak{S} generate a representation on \mathfrak{S} of the group of symmetries of the lattice of Bohr-Sommerfeld tori.

• If $\sigma \in \mathfrak{S}$ is an eigenvector of \mathbf{Q}_{j_i} with egenvalue $n_i h$, then,

$$\mathbf{Q}_{j_i} \left(\mathbf{a}^{h Z_{X_i}} \right)_* \sigma = (n_i - 1) h \left(\mathbf{a}^{h Z_{X_i}} \right)_* \sigma$$
(11)
$$\mathbf{Q}_{j_i} \left(\mathbf{a}^{h Z_{X_i}} \right)^* \sigma = (n_i + 1) h \left(\mathbf{a}^{h Z_{X_i}} \right)^* \sigma.$$

$$\left(\mathbf{e}^{hZ_{X_i}}\right)^* = \left[\left(\mathbf{e}^{hZ_{X_i}}\right)_*\right]^{-1} = \left(\mathbf{e}^{hZ_{-X_i}}\right)_*.$$
 (12)

• For i, j = 1, ..., k, the operators $\left(\mathbf{e}^{hZ_{X_i}}\right)_*$, $\left(\mathbf{e}^{hZ_{X_j}}\right)_*$, $\left(\mathbf{e}^{hZ_{X_i}}\right)^*$ and $\left(\mathbf{e}^{hZ_{X_j}}\right)^*$ commute with each other.

(University of Calgary)

- We refer to operators $(\mathbf{e}^{hZ_{X_i}})_*$ and $(\mathbf{e}^{hZ_{X_i}})^*$, i = 1, ..., k, as shifting operators.
- Given non-zero $\sigma \in \mathfrak{S}$, supported on a Bohr-Sommerfeld torus M, the family of sections

$$\left\{ \left(\mathbf{e}^{hZ_{X_k}} \right)_*^{n_k} \dots \left(\mathbf{e}^{hZ_{X_1}} \right)_*^{n_1} \sigma \in \mathfrak{S} \mid n_1, \dots, n_k \in \mathbb{Z} \right\}$$
(13)

is a linear basis of \mathfrak{S} invariant under the action of shifting operators.

- There exists a positive definte, Hermitian scalar product ⟨· | ·⟩ on 𝔅, invariant under the action of shifting operators. It is defined up to a constant positive real factor.
- With this scalar product, the basis above is orthonormal.
- The completion of S with respect to this scalar product is the Hilbert space S of quantum states of geometric quantization of
 (ℝ^k × T^k, Σ^k_{i=1} dj_i ∧ dθ_i) in the toral polarization given by the
 projection ℝ^k × T^k → ℝ^k.

General case

• Writing equation $X \sqcup \omega = -d\vartheta_i$ in action-angle coordinates $(j'_1, ..., j'_k, \vartheta'_1, ..., \vartheta'_k)$, we get

$$X \lrcorner \omega = - \mathrm{d} \left(\sum_{l=1}^k \mathsf{a}_{il} artheta_l'
ight)$$
 ,

where *a*_{i1}, ..., *a*_{ik} are integers.

• On a general symplectic manifold (P, ω) with toric polarization, we consider locally Hamiltonian vector fields X such that for any action-angle coordinates $(j_1, ..., j_k, \vartheta_1, ..., \vartheta_k)$ with domain $U \subseteq P$,

$$X_{|U} \sqcup \omega = -d\varphi$$
, where $\varphi = \sum_{i=1}^{k} a_1 \vartheta_1$ and $a_i \in \mathbb{Z}$. (14)

• We assume that the locally Hamiltonian vector field X in equation (14) is complete.

Starting with p ∈ U, we follow the integral curve e^{tX}(p) and consider, for I[×] ∈ (π[×])⁻¹(p),

$$e^{tZ_{\varphi}}(I^{\times}) = e^{-2\pi i t\varphi/h} e^{t \operatorname{lift} X}(I^{\times}).$$
(15)

- If e^{tX}(p) ∈ U for t ∈ [0, h], then e^{hZ_X}(I[×]) = e^{-2πiφ}e^{hliftX}(I[×]) is well defined, because φ is defined up to integer.
- If e^{hX}(p) ∉ U, but e^{hX}(p) is in the domain U' of action-angle coordinates (j'₁, ..., j'_k, ϑ'₁, ..., ϑ'_k) such that e^{tX}(p) ∈ U ∪ U' for t ∈ [0, h], then follow the steps below.
- Choose a point $t_1 \in [0, h]$ such that $e^{tX}(p) \in U$ for $t \in [0, t_1]$, and $e^{tX}(p_1) \in U'$ for $t \in [0, h t_1]$, where $p_1 = e^{t_1X}(p)$.
- Choose $\varphi' = a'_1 \vartheta'_1 + ... + a'_k \vartheta'_k$ such that $X_{|U'} \sqcup \omega = -d\varphi'$. Make sure that $\varphi'(p_1) = \varphi(p_1)$.

Then,

$$e^{hZ_{\chi}} (I^{\times}) = e^{(h-t_1)Z_{\varphi'}} (e^{t_1Z_{\varphi}}(I^{\times})) =$$

$$= e^{-2\pi i (h-t_1)\varphi'/h} e^{(h-t_1) \text{lift}\chi} (e^{-2\pi i t_1 \varphi/h} e^{t_1 \text{lift}\chi}(I^{\times})) =$$

$$= e^{-2\pi i (h-t_1)\varphi'(p_1)/h} e^{-2\pi i t_1 \varphi(p_1)/h} e^{(h-t_1) \text{lift}\chi} (e^{t_1 \text{lift}\chi}(I^{\times})) =$$

$$= e^{-2\pi i \varphi'(p_1)} e^{-2\pi i t_1(\varphi(p_1) - \varphi'(p_1))/h} e^{h \text{lift}\chi}(I^{\times}) =$$

$$= e^{-2\pi i \varphi'(p_1)} e^{h \text{lift}\chi}(I^{\times})$$

is well defined and it does not depend on the intermediate point $p_1 = e^{t_1 X}(p)$.

- If several intermediate action-angle coordinate charts are needed, repeat the argument above as required.
- If the vector field X is complete, we obtain globally defined shifting operators $(e^{hZ_X})_*$ and $(e^{hZ_X})^*$.
- If we have k independent, complete, locally Hamiltonian vector fields on (P, ω), which satisfy equation (14), and the lattice 𝔅 is connected, then there exists a Hernitian scalar product ⟨· | ·⟩ invariant under the action of shifting operators (e^{hZx_i}) and (e^{hZx_i}).

• Monodromy.

• In presence of monodromy, there may exist a loop in the lattice of Bohr-Sommerfeld tori, such that for some $M \in \mathfrak{B}$,

$$\left(\mathrm{e}^{hX_{\alpha_N}}\circ\ldots\circ\mathrm{e}^{hX_{\alpha_1}}\right)_{|M}:M\to M$$

need not be the identity on M.

• In this case, there is a phase factor $e^{i\alpha}$ such that

$$\left(\mathbf{e}^{hZ_{\chi_{\alpha_N}}}\circ\ldots\circ\mathbf{e}^{hZ_{\chi_{\alpha_1}}}\right)_*\sigma_M=\mathrm{e}^{i\alpha}\sigma_M.$$

• Incompleteness of X.

• If the locally Hamiltonian vector field X satisfying equation (14) incomplete, then e^{hX} is not globally defined. If the integral curve $e^{tX}(p)$ is defined only for $t \in (t_{\min}, t_{\max})$, then $e^{hX}(e^{tX}(p))$ is defined for $t \in (t_{\min}, t_{\max} - h)$, and $e^{-hX}(e^{tX}(p))$ is defined for $t \in (t_{\min} + h, t_{\max})$.

THANK YOU FOR YOUR ATTENTION

э

3