A Brief Tour of Metaplectic-c Prequantization

Jennifer Vaughan jennifer.vaughan@umanitoba.ca

University of Manitoba

CMS Winter Meeting December 9, 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Preliminary Definitions

Let (M^{2n}, ω) be a symplectic manifold.

Let (V^{2n}, Ω) be a symplectic vector space, with symplectic group Sp(V). The metaplectic group Mp(V) is the connected double cover of Sp(V).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We view the symplectic frame bundle $Sp(M, \omega)$ as a principal Sp(V) bundle over M.

Reminder of Kostant-Souriau Quantization

The Kostant-Souriau quantization procedure with half-form correction requires that (M, ω) admit two objects:

• A prequantization circle bundle

$$(Y,\gamma) \rightarrow (M,\omega)$$

• A metaplectic structure, which is a principal Mp(V) bundle over M that is compatible with the symplectic frame bundle.

The metaplectic structure and a choice of polarization F give rise to the **half-form bundle** $\bigwedge^{1/2} F$, which is a complex line bundle over M.

Key idea: metaplectic-c quantization replaces the prequantization circle bundle and metaplectic structure with a single object.

Origins: Hess (1981), Robinson and Rawnsley (1989)

Metaplectic-c Prequantization

The metaplectic-c group is

$$\operatorname{Mp}^{c}(V) = \operatorname{Mp}(V) \times_{\mathbb{Z}_{2}} U(1).$$

It is a circle extension of Sp(V):

$$1 \longrightarrow U(1) \longrightarrow \mathsf{Mp}^{\mathsf{c}}(V) \longrightarrow \mathsf{Sp}(V) \longrightarrow 1$$

A metaplectic-c prequantization for (M, ω) is a triple (P, Σ, γ) , where:

$$(P,\gamma) \xrightarrow{\Sigma} \mathsf{Sp}(M,\omega)$$

$$\downarrow \sqcap$$

$$(M,\omega)$$

- *P* is a principal $Mp^{c}(V)$ bundle over *M*;
- Σ is an equivariant map from P to $Sp(M, \omega)$;
- γ is a u(1)-valued one-form on P, analogous to a connection one-form on a circle bundle.

Now that we have metaplectic-c prequantizations...

what can we do with them?

 (M, ω) admits a prequantization circle bundle and a metaplectic structure if the two cohomology classes $\left[\frac{1}{2\pi\hbar}\omega\right]$ and $\frac{1}{2}c_1(TM)$ are both integral.

 (M, ω) admits a metaplectic-c prequantization if their sum is integral. So metaplectic-c prequantization applies to a larger class of symplectic manifolds.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Infinitesimal Metaplectic-c Quantomorphisms

Given a prequantization circle bundle $(Y, \gamma) \rightarrow (M, \omega)$, let $\mathcal{Q}(Y, \gamma)$ be the Lie algebra of **infinitesimal quantomorphisms**: that is, the vector fields on Y that preserve the connection γ .

Then $C^{\infty}(M)$ and $Q(Y, \gamma)$ are isomorphic Lie algebras.

Metaplectic-c analog:

Definition. Given a metaplectic-c prequantization $(P, \gamma) \xrightarrow{\Sigma} Sp(M, \omega) \rightarrow (M, \omega)$, an **infinitesmial metaplectic-c quantomorphism** is a vector field ζ on P that preserves γ and that satisfies $\Sigma_*\zeta = \widetilde{\Pi_*\zeta}$.

Theorem. Let $\mathcal{Q}(P, \Sigma, \gamma)$ be the Lie algebra of infinitesimal metaplectic-c quantomorphisms. Then $\mathcal{Q}(P, \Sigma, \gamma)$ and $C^{\infty}(M)$ are isomorphic Lie algebras.

Quantized Energy Levels (1)

Consider $H \in C^{\infty}(M)$, which we interpret as an energy function. What are its quantized energy levels?

Let *E* be a regular value of *H*, and let $S = H^{-1}(E)$.

Construction due to Robinson (1990).

Let *H* have Hamiltonian vector field ξ_H on *M*. There is a natural lift to $\tilde{\xi}_H$ on Sp(*M*, ω), which then descends to Sp(*TS*/*TS*^{\perp}).

Quantized Energy Levels (2)

Definition. The regular value E of H is a **quantized energy level** for the system (M, ω, H) if the connection one-form γ_S on P_S has trivial holonomy over all closed orbits of $\tilde{\xi}_H$ on Sp (TS/TS^{\perp}) .

Theorem (Dynamical Invariance). Let $H_1, H_2 \in C^{\infty}(M)$ be such that

$$H_1^{-1}(E_1) = H_2^{-1}(E_2)$$

for regular values E_1 , E_2 of H_1 and H_2 . Then E_1 is a quantized energy level for (M, ω, H_1) if and only if E_2 is a quantized energy level for (M, ω, H_2) .

Quantized Energy Levels (3)

Examples.

• The *n*-dimensional harmonic oscillator: $M = \mathbb{R}^{2n}$, Cartesian coordinates (q,p), $\omega = \sum^{\cdots} dq_j \wedge dp_j$, $H = \frac{1}{2}(p^2 + q^2)$.

Quantized energy levels:

$$E_N = \hbar \left(N + \frac{n}{2} \right), \quad N \in \mathbb{Z}, \quad E_N > 0.$$

• The hydrogen atom: $M = \dot{\mathbb{R}}^3 imes \mathbb{R}^3$, $\omega = \sum dq_j \wedge dp_j$,

 $H = \frac{1}{2m_e}p^2 - \frac{k}{|a|}, m_e, k > 0.$ Negative quantized energy levels:

$$E_N=-rac{m_ek^2}{2\hbar^2N^2},\ \ N\in\mathbb{N}.$$

A D N A 目 N A E N A E N A B N A C N

Quantized Energy Levels (4)

Consider k Poisson-commuting functions $H = (H_1, ..., H_k)$, and a regular level set $S = H^{-1}(E)$ where $E \in \mathbb{R}^k$.

There is an analogous construction of

$$(P_S, \gamma_S) \to \operatorname{Sp}(TS/TS^{\perp}) \to S$$

Definition. The regular value *E* is a **quantized energy level** for (M, ω, H) if γ_S has trivial holonomy over all curves in $Sp(TS/TS^{\perp})$ with tangent vectors in the span of $\tilde{\xi}_{H_1}, \ldots, \tilde{\xi}_{H_k}$.

This definition satisfies a generalized dynamical invariance property.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In the special case k = n, it is equivalent to a Bohr-Sommerfeld condition.

Equivariant Metaplectic-c Prequantizations (1)

Let (M, ω) have a Hamiltonian *G*-action with momentum map $\Phi: M \to \mathfrak{g}^*$. Each $\xi \in \mathfrak{g}$ generates vector fields ξ_M on M and $\tilde{\xi}_M$ on $\mathsf{Sp}(M, \omega)$.

A metaplectic-c prequantization $(P, \Sigma, \gamma) \rightarrow (M, \omega)$ is **equivariant** if there is a *G*-action on *P*, lifting that on Sp (M, ω) , such that for all $\xi \in \mathfrak{g}$,

$$\gamma(\xi_P) = -\frac{1}{i\hbar}\Pi^*\Phi^{\xi}$$

For Hamiltonian torus actions:

Fact. Let (M, ω) have an effective Hamiltonian T^k action with momentum map Φ and a fixed point z. Given a metaplectic-c prequantization $(P, \Sigma, \gamma) \rightarrow (M, \omega)$, it is always possible to shift the momentum map Φ such that (P, Σ, γ) is equivariant.

Equivariant Metaplectic-c Prequantizations (2) Fix a Delzant polytope

$$\Delta = \{ x \in \mathbb{R}^{n*} : \langle x, v_j \rangle \le \lambda_j, \ 1 \le j \le N \}$$

where v_j are primitive outward-pointing normals to the N facets and λ_j are real numbers.

Define $\pi_* : \mathbb{R}^N \to \mathbb{R}^n$ by $\pi_* e_j = v_j$.

Let $K = \ker \pi$, and let *d* be the dimension of *K*. Short exact sequences:

$$1 \to \mathcal{K} \xrightarrow{i} \mathcal{T}^{N} \xrightarrow{\pi} \mathcal{T}^{n} \to 1$$
$$0 \to \mathfrak{k} \xrightarrow{i_{*}} \mathbb{R}^{N} \xrightarrow{\pi_{*}} \mathbb{R}^{n} \to 0$$
$$0 \to \mathbb{R}^{n_{*}} \xrightarrow{\pi^{*}} \mathbb{R}^{N_{*}} \xrightarrow{i^{*}} \mathfrak{k}^{*} \to 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $\nu = i^*(-\lambda + \frac{h}{2}\mathbf{1}) \in \mathfrak{k}^*$.

Equivariant Metaplectic-c Prequantizations (3)

Let $M = \mathbb{R}^{2N}$, with the standard action of T^N . The Delzant construction...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Equivariant Metaplectic-c Prequantizations (3)

...extends to a metaplectic-c equivariant Delzant construction...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

...when $i^*\left(-\lambda+\frac{h}{2}\mathbf{1}\right)\in h\mathbb{Z}^{d*}$.