Adiabatic limits, Theta functions, and Geometric Quantization

2019 CMS Winter Meeting

Takahiko Yoshida Meiji University

Based on arXiv:1904.04076

Purpose & Main Theorems

Geometric quantization

Geometric quantization \cdots a procedure to construct a representation of the Poisson algebra of certain functions on (M,ω) to a Hilbert space, called a quantum Hilbert space $Q(M,\omega)$ from the given symplectic manifold (M,ω) in the geometric way

Classical mechanics Quantum mechanics $(M,\omega) \longrightarrow Q(M,\omega) : \text{Hilbert space}$ $f \in C^{\infty}(M) \longrightarrow Q(f) : \text{operator on } Q(M,\omega)$ $Q \text{ satisfies } Q(\{f,g\}) = \frac{2\pi\sqrt{-1}}{b} \left\{ Q(f)Q(g) - Q(g)Q(f) \right\}$

Example (Canonical quantization)

$$\begin{pmatrix} \mathbb{R}^{2n}, \omega_0 := \sum_{i=1}^n dp_i \wedge dq_i \end{pmatrix} \longrightarrow Q(\mathbb{R}^{2n}, \omega_0) := L^2(\mathbb{R}^n_q)$$
$$p_i, q_i \in C^{\infty}(\mathbb{R}^{2n}) \longrightarrow \begin{cases} Q(p_i) := \frac{h}{2\pi\sqrt{-1}} \frac{\partial}{\partial q_i} \\ Q(q_i) := q_i \times \end{cases}$$

Kostant-Souriau theory

 (M,ω) closed symplectic manifold

$$(L,\nabla^L) \ \ \text{prequantum line bundle} \ \stackrel{\text{def}}{\Leftrightarrow} \left\{ \begin{array}{l} L \to M \ \ \text{Hermitian line bundle} \\ \nabla^L \ \text{connection of} \ L \ \text{with} \ \frac{\sqrt{-1}}{2\pi} F_{\nabla^L} = \omega \end{array} \right.$$

In the Kostant-Souriau theory, to obtain the quantum Hilbert space $Q(M, \omega)$, we need a polarization.

Definition

A polarization \mathcal{P} is an integrable Lagrangian distribution of $TM \otimes \mathbb{C}$.

• Let $\mathcal S$ be the sheaf of germs of covariant constant sections of $\mathcal L$ along $\mathcal P$.

When a polarization $\mathcal P$ is given, $\mathcal Q(M,\omega)$ is "naively" defined to be

Definition

$$Q(M,\omega):=H^0(M;\mathcal{S})$$

Example (Kähler quantization)

 (M, ω, J) closed Kähler manifold

 (L, h, ∇^L) holomorphic Hermitian line bundle with Chern connection

 $\Rightarrow T^{0,1}M$ can be taken to be a polarization \mathcal{P} .

Definition

$$Q_{K\ddot{a}hler}(M,\omega) := H^0(M;\mathcal{O}_L)$$

 When the Kodaira vanishing holds, dim Q_{Kāhler}(M, ω) = index of the Dolbeault operator with coefficients in L.

Example (Real quantization)

 $(L, \nabla^L) \to (M, \omega) \stackrel{\pi}{\to} B$ prequantized Lagrangian torus fiber bundle

• $(L, \nabla^L)|_{\pi^{-1}(b)}$ is a flat bundle for $\forall b \in B$.

Definition (Bohr-Sommerfeld (BS) point)

 $b \in B$ is Bohr-Sommerfeld $\stackrel{\mathsf{def}}{\Leftrightarrow} \left\{ s \in \Gamma(L|_{\pi^{-1}(b)}) \mid \nabla^L s = 0 \right\} \neq \{0\}$

- · BS points appear discretely.
- We denote by B_{BS} the set of BS points

Example (Local model)

$$\left(\mathbb{R}^n \times T^n \times \mathbb{C}, d - 2\pi\sqrt{-1}\sum_{i=1}^n x_i dy_i\right) \to \left(\mathbb{R}^n \times T^n, \omega_0\right) \stackrel{\pi_0}{\to} \mathbb{R}^n \ \therefore \ \mathbb{R}^n_{BS} = \mathbb{Z}^n$$

5

Example (Real quantization) continued

$$(L, \nabla^L) \to (M, \omega) \stackrel{\pi}{\to} B$$
 prequantized Lagrangian torus fiber bundle

 \Rightarrow The tangent bundle along the fiber $T_{\pi}M\otimes\mathbb{C}$ can be taken to be a polarization \mathcal{P} .

Assume (M, ω) is closed.

Theorem (Śniatycki)

$$H^{q}(M;\mathcal{S}) = \begin{cases} \bigoplus_{b \in \mathcal{B}_{BS}} \left\{ s \in \Gamma(L|_{\pi^{-1}(b)}) \mid \nabla^{L} s = 0 \right\} & \textit{if } q = \frac{\dim_{\mathbb{R}} M}{2} \\ 0 & \textit{if } q : \textit{otherwise} \end{cases}$$

Definition (Real quantization)

$$Q_{real}(M,\omega) := \oplus_{b \in \mathcal{B}_{BS}} \left\{ s \in \Gamma(L|_{\pi^{-1}(b)}) \mid \nabla^{L} s = 0
ight\}$$

Does $Q(M, \omega)$ depend on a choice of polarization?

Question

$$Q_{K\ddot{a}hler}(M,\omega)\cong Q_{real}(M,\omega)$$
 ?

- Several examples show their dimensions agree with each other:
 - dim $Q_{K\ddot{a}hler}(M,\omega) = \dim Q_{real}(M,\omega)$ (Andersen '97)
 - the moment map μ of a toric manifold (Danilov '78),

$$\dim H^0(M; \mathcal{O}_L) = \#\mu(M) \cap \mathfrak{t}_{\mathbb{Z}}^* = \#\mathsf{BS}\;\mathsf{pts}$$

- the Gelfand-Cetlin system on the complex flag manifold (Guillemin-Sternberg '83)
- the Goldman system on the moduli space of flat SU(2)-bundles on a Riemann surface (Jeffrey-Weitsman '92)

$Q_{K\ddot{a}hler}\cong Q_{real}$ as a limit of deformation of complex structures

Theorem (Baier-Florentino-Muorão-Nunes '11)

When (M, ω) is a toric manifold, they give a one-parameter family of

• $\{J^t\}_{t>0}$ compatible complex structures of M

and for $\forall t > 0$

L,

• $\{\sigma_m^t\}_{m\in\mu(M)\cap \mathfrak{t}_{\mathbb{Z}}^*}$ a basis of holomorphic sections of $L\to (M,\omega,J^t)$ such that for $\forall m\in\mu(M)\cap\mathfrak{t}_{\mathbb{Z}}^*$, σ_m^t converges to a delta-function section supported on $\mu^{-1}(m)$ as $t\to\infty$ in the following sense, for any section s of

$$\lim_{t \to \infty} \int_{M} \left\langle \boldsymbol{s}, \frac{\sigma_{m}^{t}}{\|\sigma_{m}^{t}\|_{L^{1}}} \right\rangle_{L} \frac{\omega^{n}}{n!} = \int_{\mu^{-1}(m)} \left\langle \boldsymbol{s}, \delta_{m} \right\rangle_{L} d\theta_{m}.$$

- Similar results have been obtained (but only for non-singular fibers):
 - the Gelfand-Cetlin system on the complex flag manifold (Hamilton-Konno '14)
 - smooth irreducible complex algebraic variety with certain assumptions (Hamilton-Harada-Kaveh '16)

How about the non-Kähler case?

For a non-integrable J, we have several generalizations of the Kähler quantization. Among these is the Spin^c quantization.

Theorem (Fujita-Furuta-Y '10)

Let $(L, \nabla^L) \to (M, \omega) \stackrel{\pi}{\to} B$ be a prequantized Lagrangian torus fiber bundle with compact M. Let J be a compatible almost complex strucutre on (M, ω) . For the $Spin^c$ Dirac operator D associated with J, we have

ind
$$D = \#BS$$
.

Purpose

To generalize BFMN apporach to the Spin^c quantization.

Spin^c quantization – a generalization of the Kähler quantization

 $(L, \nabla^L) \to (M, \omega)$ closed symplectic manifold with prequantum line bundle

 \Rightarrow By taking a compatible almost complex structure J, we can obtain the Spin^c Dirac operator

$$D \colon \Gamma \left(\wedge^{\bullet} (T^{*}M)^{0,1} \otimes L \right) \to \Gamma \left(\wedge^{\bullet} (T^{*}M)^{0,1} \otimes L \right).$$

D is a 1st order, formally self-adjoint, elliptic differential operator.

Definition (Spin^c quantization)

$$Q_{\mathit{Spin}^c}(M,\omega) := \ker(D|_{\wedge^{0,\mathit{even}}}) - \ker(D|_{\wedge^{0,\mathit{odd}}}) \in \mathcal{K}(\mathit{pt}) \cong \mathbb{Z}$$

- dim Q_{Spin^c}(M, ω) = ind D depends only on ω and does not depend on the choice of J and ∇^L.
- If (M, ω, J) is Kähler (hence, (L, ∇^L) is holomorphic with Chern connection), then $D = \sqrt{2}(\bar{\partial} \otimes L + \bar{\partial}^* \otimes L)$ and

$$\operatorname{ind} D = \sum_{q \geq 0} (-1)^q \dim H^q(M, \mathcal{O}_L).$$

Deformation of almost complex structure

 $\pi: (M, \omega) \to B$: Lagrangian torus fiber bundle

J: compatible almost complex structure of (M, ω)

 \Rightarrow $TM = JT_{\pi}M \oplus T_{\pi}M$ $(T_{\pi}M$: tangent bundle along the fiber of π)

Definition

For each t > 0, define J^t by

$$J^{t}v := \begin{cases} \frac{1}{t}Jv & \text{if } v \in T_{\pi}M\\ tJv & \text{if } v \in JT_{\pi}M. \end{cases}$$

- J^t is still a compatible almost complex structure of (M, ω) .
- Assume J is invariant along the fiber of π . Then,

J: integrable
$$\Leftrightarrow J^t$$
: integrable $\forall t > 0$

- As t → +∞, T_πM becomes smaller and JT_πM becomes larger with respect to g^t := ω(·, J^t·). (adiabatic-type limit)
- For each t > 0, we denote by D^t the Dirac operator with respect to J^t .

Main Theorem

 $(L, \nabla^L) \to (M, \omega) \stackrel{\pi}{\to} B$: prequantized Lagrangian torus fiber bundle J: compatible almost complex structure of (M, ω) invariant along the fiber of π $\{J^t\}_{t>0}$: the deformation of J defined as in the previous slide

Theorem (Y'19)

Assume M is closed and B is complete (i.e., $\tilde{B} \cong \mathbb{R}^n$). For each t > 0, we give orthogonal sections $\{\vartheta_m^t\}_{m \in B_{BS}}$ on L indexed by B_{BS} such that

1. each ϑ_m^t converges to a delta-function section supported on $\pi^{-1}(m)$ as $t \to \infty$ in the following sense, for any section s of L,

$$\lim_{t \to \infty} \int_{M} \left\langle \mathbf{s}, \frac{\vartheta_{m}^{t}}{\|\vartheta_{m}^{t}\|_{L^{1}}} \right\rangle_{L} \frac{\omega^{n}}{n!} = \int_{\pi^{-1}(m)} \left\langle \mathbf{s}, \delta_{m} \right\rangle_{L} |\mathit{dy}|.$$

 $2. \lim_{t\to\infty} \|D^t \vartheta_m^t\|_{L^2} = 0.$

Moreover, if J is integrable, then, with a technical assumption, we can take $\{\vartheta_m^t\}_{m\in B_{BS}}$ to be an orthogonal basis of holomorphic sections of $L\to (M,\omega,J^t)$.

Relation with Theta functions

Corollary

When
$$\pi = p_1 : M = T^n \times T^n \to B = T^n$$
,
$$\vartheta_m(x,y) = e^{\pi \sqrt{-1}(-m \cdot \Omega m + x \cdot \Omega x)} \vartheta \begin{bmatrix} m \\ 0 \end{bmatrix} (-\Omega x + y, \Omega).$$

Thank you for your attention!