A note on the Fundamental Theorem of Algebra

Theorem. Every nonconstant polynomial over \mathbf{C} has a root.
Proof. Consider the space of polynomials $P(z, a)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{0}$ of z of degree n with complex coefficients a_{n-1}, \ldots, a_{0}.

In the space $\mathbf{C}^{n+1}=\left\{\left(z, a_{n-1}, \ldots, a_{0}\right)\right\}$ consider the set Σ cut out by the 2 equations $P(z, a)=Q(z, a)=0$, where $Q(z, a):=P^{\prime}(z, a)=\partial P / \partial z=n z^{n-1}+(n-1) a_{n-1} z^{n-2}+$ $\ldots+a_{1}$. This is the space of polynomials with coefficients a, that have double root at z.

Lemma 1. Σ is a smooth submanifold in \mathbf{C}^{n+1} of complex codimension 2 (i.e. of complex dimension $n-1$).

Proof. It suffices to check that for the map

$$
(P, Q): \mathbf{C}^{n+1} \rightarrow \mathbf{C}^{2}, \quad(z, a) \mapsto(P(z, a), Q(z, a))
$$

$(0,0)$ is a regular value. Actually, for this map all values in \mathbf{C}^{2} are regular, since ∇P and ∇Q are everywhere noncollinear in \mathbf{C}^{n+1}. Indeed, $\nabla P=(*, \ldots, *, 1)$, while $\nabla Q=(*, \ldots, *, 1,0)$, where the last two derivatives are with respect to a_{1} and a_{0}.

Project $\pi: \Sigma^{n-1} \rightarrow \mathbf{C}_{a}^{n}$ by the "forgetful map" $(z, a) \mapsto a$. The image $\Delta:=\pi(\Sigma)$ is the space of all polynomials which have a double root. This image Δ is a surface in \mathbf{C}_{a}^{n}, which has complex dimension (not greater than) $n-1$, that of Σ. (Actually, this hypersurface Δ^{n-1} is singular, as the forgetful map of Σ^{n-1} to \mathbf{C}_{a}^{n} is not an embedding.)

Corollary 2. The surface $\Delta^{n-1} \subset \mathbf{C}_{a}^{n}$ is of complex codimension 1, i.e. of real codimension 2 in \mathbf{C}_{a}^{n}, and therefore its complement in \mathbf{C}_{a}^{n} is connected.

Lemma 3. For $a \notin \Delta$, roots of the polynomial $P(z, a)$ depend smoothly on a.
Proof. This is the implicit function theorem: the equation $P(z, a)=0$ locally defines z as a function of a provided that $\partial P(z, a) / \partial z \neq 0$. But the latter is exactly the condition that the corresponding $a \notin \Delta$, i.e. $(z, a) \notin \Sigma$.

Corollary 4. Any two polynomials of degree n, lying outside of the complex hypersurface $\Delta^{n-1} \subset \mathbf{C}_{a}^{n}$ have the same number of roots.

Indeed, connect them by a smooth path staying away from Δ^{n-1} (which is possible due to Corollary 2). On the way, the roots change smoothly, i.e. they cannot collide, appear, or disappear.

Finally, note that the polynomial $P_{0}:=z^{n}-1$ has n simple roots. All polynomials outside of Δ^{n-1} can be connected to it, hence they also have the same number of roots (and therefore, at least one).

Finally, it remains to prove the theorem for $P \in \Delta$. But this is evident by definition of Δ : this surface consists of polynomials which have (at least one) double root. QED.

